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Re-expression of CA1 and entorhinal activity
patterns preserves temporal context
memory at long timescales

Futing Zou 1 , Guo Wanjia 1, Emily J. Allen 2, Yihan Wu3, Ian Charest 4,
Thomas Naselaris5, Kendrick Kay2, Brice A. Kuhl 1,6,
J. Benjamin Hutchinson 1,7 & Sarah DuBrow 1,6,7,8

Converging, cross-species evidence indicates that memory for time is sup-
ported by hippocampal area CA1 and entorhinal cortex. However, limited
evidence characterizes how these regions preserve temporal memories over
long timescales (e.g., months). At long timescales, memoranda may be
encountered in multiple temporal contexts, potentially creating interference.
Here, using 7T fMRI, we measured CA1 and entorhinal activity patterns as
humanparticipants viewed thousandsof natural scene images distributed, and
repeated, across many months. We show that memory for an image’s original
temporal contextwas predictedby thedegree towhichCA1/entorhinal activity
patterns from the first encounter with an image were re-expressed during re-
encounters occurring minutes to months later. Critically, temporal memory
signals were dissociable from predictors of recognition confidence, which
were carried by distinct medial temporal lobe expressions. These findings
suggest that CA1 and entorhinal cortex preserve temporal memories across
long timescales by coding for and reinstating temporal context information.

Episodic memory fundamentally involves the ability to remember not
only what happened in the past, but when it happened1. Indeed, pla-
cing memories in time critically enables experiences to be organized
into personal narratives that span weeks, months, and years2. Yet, the
majority of cognitive neuroscience studies of human memory only
consider memory across relatively short timescales (overwhelmingly,
within a single experimental session/day). At longer timescales, one of
the particular challenges to retaining precise temporal memories is
that previously-encoded information is likely to be ‘re-encountered’ in
new temporal contexts3. For example, remembering precisely when
you first saw a particular movie may be complicated by re-watching
that movie at a later date. Understanding how memories of specific
temporal contexts are preserved when experiences are repeated over

long timescales (days, weeks,months) requires identifyingnot only the
neural structures that are involved, but the mechanistic contributions
that these structures support.

Broadly, the medial temporal lobe (MTL) system is known to cri-
tically support episodic memory4–6. However, within the MTL system,
hippocampal subfield CA1 and entorhinal cortex (ERC) have emerged
as being particularly important for processing and remembering
temporal information7–11. For example, so-called “time cells” in CA1 and
“ramping cells” in ERC have been shown to code for elapsed time in
rodents12–15, with similar effects recently observed in the human hip-
pocampus and ERC16,17. Importantly, although individual time cells
typically operate over very short timescales (seconds), ensembles of
time cells may provide temporal context representations that span
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much longer timescales18 and allow individual memories to be ‘placed’
in time19. These temporal context representations are thought to
integrate information about temporally adjacent events as well as
ongoing internal operations or processes20. While human fMRI studies
have provided important evidence that activation levels in the hippo-
campus and ERC are associated with the precision of temporal
memory21,22, measures of activation, alone, are not able to capture the
ensemble representations in which temporal context information is
thought to be encoded23,24.

Importantly, to the extent that CA1 and ERC do code for the
temporal context in which events occur, there are multiple—and
mechanistically distinct—ways in which these representations might
preserve temporal memories. On the one hand, when a given stimulus
is re-encountered in a new temporal context, CA1 and/or ERC may
encode the new temporal context as distinct from the original
context25. Forming distinct temporal context representations across
repeated encounters is potentially beneficial to temporal memory by
improving discriminability of these contexts26. On the other hand,
when a stimulus is re-encountered in a new temporal context, this
potentially creates an opportunity to reinstate the prior temporal
context20,27. For example, when a familiar movie is on television, this
might trigger recall of theoriginal temporal context inwhich themovie
was encountered. Critically, this reinstatement should strengthen the
association between the movie and its original temporal context28.
According to leading theoretical accounts, a stronger association
between a given memory (e.g., the movie) and a particular temporal
context (e.g., the movie’s original temporal context) will directly sup-
port the ability to place that memory in time29. Thus, in contrast to a
context distinctiveness account, a context reinstatement account
makes the prediction that, when stimuli are re-encountered, memory
for the original temporal context will be preserved to the extent that
activity patterns in CA1 and/or ERC are similar to (or reinstate) the
activity patterns expressed when the stimulus was first encountered.

Here we sought to characterize the neural mechanisms that pre-
serve temporal context memory when events are re-encountered
across long timescales (days tomonths). To address this, we describe a
massive human fMRI experiment in which participants encountered
thousands of natural scene images repeatedly during 30–40 scan
sessions distributed over an8–10monthwindow30. After all scanswere
completed, participants performed a temporalmemory task inwhich a
subset of images were presented and participants were asked to esti-
mate when each image was first encountered (on a scale that ranged
from days tomonths in the past). The focus of our analyses was to test
whether temporal memory precision was predicted by the degree to
which patterns of neural activity expressed when images were first
encountered were re-expressed when these images were re-
encountered (a potential marker of context reinstatement). By lever-
aging the ultra-high field strength (7 T) and high spatial resolution (1.8-
mm) of our imaging protocol, we interrogated subregions of the hip-
pocampus (including CA1) and surroundingMTL structures (including
ERC). This experimental design yielded an unprecedented ability to
understand how temporally-precisememories are preserved over long
timescales that are critical for real-world memories.

Results
Precise temporal memory persists across months
Eight participants completed two experimental phases (Fig. 1a). The
first phase consisted of a continuous recognition task conducted
during fMRI scanning. The second phase consisted of a final memory
test conducted outside of the scanner. During the continuous recog-
nition phase, participants viewed 9209–10,000 natural scene images
across 30–40 fMRI sessions and indicated whether or not each image
had previously been encountered at any point in the experiment
(Fig. 1b). Each image was presented up to three times with these
exposures pseudo-randomly distributed across the entire experiment

(Fig. 1d). At least two days after completion of the last session of the
continuous recognition phase, participants completed a final memory
test on a subset of images (Fig. 1c). Each trial of the final memory test
began with a recognitionmemory judgment on a 1–6 confidence scale
(1: ‘high confidence new’, 6: ‘high confidence old’). For images judged
to be ‘old’, participants were also prompted to make frequency and
temporal memory judgments. For the frequency judgment, partici-
pants were asked howmany times they had seen the image during the
continuous recognition phase (1, 2, 3, or 4 or more). For the temporal
memory judgment, which is the primary focus of the present study,
participants were instructed to position a marker along a continuous
timeline when in the experiment each image was first encountered.

All participants performed above chance on the recognition
memory test (Fig. 2a; hit rate greater than false alarm rate: t7 = 8.24, p <
0.001, Cohen’s d = 1.56, 95% confidence interval (CI) = [0.2, 0.36], two-
tailed paired-sample t-test). Separating the data across three con-
fidence levels (low, medium, and high) revealed that recognition
memory accuracy (d’) increased with levels of subjective confidence
(Fig. 2b; F2,14 = 16.66, p <0.001, η2 = 0.70, one-way repeated-measures
ANOVA). Results for the frequency test are reported in Supplemen-
tary Fig. 1.

Of critical interest was the accuracy of temporal memory judg-
ments, which required participants to recall the first time each scene
was encountered over the course of the up to 10-month experiment.
To reduce the effects of non-linearity in temporal memory judgments
(e.g., response bias towards the center of the timeline, see “Methods”
and Supplementary Fig. 2), we converted both the actual (objective)
and the estimated (subjective) temporal positions to ranked positions
for further analyses. Based on the ranks, we quantified item-wise
temporalmemory error by comparing the distance between the actual
and estimated ranked positions (Fig. 1e). To determine temporal
accuracy across participants, we ran a mixed-effects linear regression
model for estimated against actual temporal positionwith participants
as a random effect. Results from this analysis indicated that partici-
pantswere able toplace images in their correct temporal contextswith
above-chance accuracy (Fig. 2c; group-level β =0.302, p < 0.001, 95%
CI = [0.24, 0.36]). We further evaluated temporalmemory accuracy for
each participant using a permutation test (see “Methods”). This ana-
lysis revealed that temporal memory performance was above chance
for seven out of the eight participants (Fig. 2d; ps < 0.01; one partici-
pant: p = 0.083). The relatively high accuracy of the temporal memory
judgments is notable when considering that participants were not
informed that they would be tested on temporalmemory until after all
of the continuous recognition sessions.

CA1 and entorhinal representational similarity across exposures
predicts temporal memory precision
The primary goal of the present study was to investigate whether the
similarity (or dissimilarity) of MTL representations across repeated
stimulus encounters predicts the accuracy of temporal memory
judgments across long timescales. Accordingly, we examined the
representational similarity between exposures of each of the images
that were subsequently probed in the temporal memory test. Given
our a priori interest in MTL structures, we focused on two manually
segmented subfields of the hippocampus (CA1 and CA2/3/dentate
gyrus, hereafter CA2/3/DG), along with ERC, perirhinal cortex (PRC),
and parahippocampal cortex (PHC) (Fig. 3a). For each region of
interest (ROI), we correlated the activity patterns between each pair
of exposures of the same image (i.e., r(E1, E2), r(E2, E3), and r(E1, E3)).
The resulting correlations were then Fisher-transformed prior to
statistical testing. As a first step, we averaged across these pairwise
correlations to generate a single similarity metric (across exposures)
for each image (Fig. 3b). We then compared these similarity metrics
for images associated with high versus low temporal memory preci-
sion (based on a participant-specific median split). Statistical
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significance of the difference between high and low temporal mem-
ory precisionwas evaluated using a permutation test that shuffles the
images’ temporal memory identities within each participant. Among
the set of MTL ROIs, CA1 and ERC exhibited significantly greater
pattern similarity across repeated exposures for high-precision
images relative to low-precision images (Fig. 3c; CA1: p = 0.004;
ERC: p = 0.004; permutation tests). The fact that temporal memory
precision was associated with greater pattern similarity across
exposures in CA1 and ERC is consistent with a context reinstatement
account, wherein the original temporal context is reinstated (and
strengthened) during subsequent exposures.

We next performed several control analyses. First, because tem-
poralmemory precision increased as a function of the session position
in which the first exposure occurred (recency effect, see Supplemen-
tary Fig. 3), we repeated the analyses for CA1 and ERC while explicitly
accounting for temporal lag information (Fig. 1d). Specifically, we ran a
mixed-effects logistic regression model that predicted temporal
memory precision from pattern similarity across exposures with
temporal lags (lag 0–3) included as fixed effects and participant
included as a random effect. This analysis confirmed that the rela-
tionship between pattern similarity in CA1/ERC and temporal memory
precision remained significant when accounting for temporal lag
information (Fig. 3d; CA1: β = 2.134, p =0.005, 95% CI = [0.63, 3.64];
ERC: β = 3.207, p =0.008, 95% CI = [0.83, 5.58]).

Second, we repeated the foregoing analyses for an early visual
cortex ROI (V1) that would be sensitive to low-level visual information
but would not be expected to code for temporal context. As expected,
V1 pattern similarity across exposures did not differ for high- versus
low-precision images (Fig. 3c;p = 0.25; permutation test) andwas not a
predictor of temporal memory precision (Fig. 3d; p =0.376; logistic
mixed-effects regression). Likewise, an additional, exploratory whole-
brain analysis did not identify any cortical areas outside the MTL for
which the relationship between pattern similarity and temporal
memory was significant after correction for multiple comparisons
(Supplementary Table 1).

Third, and critically, we next tested whether the effects observed
in CA1 and ERC were specific to temporal memory. To this end, we
repeated the same mixed-effects regression model but now used
recognition confidence as the dependent variable instead of temporal
precision. Neither CA1 nor ERC exhibited significant relationships
between pattern similarity and recognition confidence (ps > 0.10). In
contrast, pattern similarity was a significant predictor of recognition
confidence in PHC (Fig. 3e; β = 0.799, p < 0.001, 95%CI = [0.34, 1.25]). A
follow-up control analysis which included recognition confidence
together with pattern similarity as fixed effects in a mixed-effects
regression model confirmed that pattern similarity in CA1 and ERC
predicted temporal memory precision when accounting for recogni-
tion confidence (CA1: β = 2.073, p =0.007, 95% CI = [0.56, 3.58]; ERC:
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Fig. 1 | Experimental design. aOverview of experimental procedures: participants
completed two experimental phases. The continuous recognition phase consisted
of 30–40 separate fMRI scan sessions distributed across 8–10months. Across these
sessions, thousands of natural scene images were pseudo-randomly presented up
to three times. After all of the scan sessions were completed, participants per-
formed a final memory test on a subset of images outside of the scanner on a
separate day (2–7 days later). b Continuous recognition test. While maintaining
central fixation, participants viewed sequences of natural scenes and reported
whether each image had been seen at any previous point in the experiment. c Final
memory test. Each trial of the final memory test began with a recognition memory
judgment in which participants made a recognition decision together with a con-
fidence rating from 1–6 (1: ‘high confidence new’, 6: ‘high confidence old’). For each
image judged as ‘old’, a frequency test followed in which participants were asked

how many times they had seen the image before (1, 2, 3, or 4 or more). Following
that, participants were asked to indicate on a continuous timeline when the image
in question was first encountered (temporal memory test; note this is a conceptual
illustration of the task, see “Methods” and Supplementary Movie 1 for more
information). d Timeline of an example image. Each old image used in the final
memory test was presented three times during the continuous recognition phase
and associated with four temporal lags. The first fMRI scan session of the con-
tinuous recognition phase for each participant corresponds to Day 0. All temporal
lags were quantified in seconds and transformed with the natural logarithm for
further analyses. e Behavioral measure of temporal memory. Item-wise temporal
memory error was quantified as the difference between the ranked actual and
ranked estimated temporal positions.
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β = 3.132, p = 0.010, 95% CI = [0.75, 5.51]). These results help constrain
accounts of why pattern similarity in CA1/ERC predicted temporal
memory precision. Namely, they argue against the possibility that the
relationships between CA1/ERC pattern similarity and temporal
memory precision were a secondary consequence of overall memory
strength for the images. Rather, pattern similarity across exposures in

CA1 and ERC specifically predicted better memory for when (in time)
images were first encountered.

Similarity between first and second exposures uniquely predicts
temporal memory
Having demonstrated that CA1 and ERC pattern similarity across
repeated exposures predicts temporal memory for an image’s first
exposure, we next sought to determine which pair of image exposures
was most predictive of temporal memory. From a context reinstate-
ment perspective, similarity between the first exposure (E1) and the
second exposure (E2) should be uniquely important because E2 pro-
vides the first opportunity to reinstate the temporal context from E1.
To test this, we first compared pattern similarity for high- and low-
precision images for eachpair of image exposures (E1-E2, E2-E3, and E1-
E3). Statistical significance of the difference between high- and low-
precision images for each exposure pair was computed a permutation
analysis in which, for each participant and exposure pair, we randomly
shuffled the images’ temporal memory precision labels. For both CA1
and ERC, E1-E2 similarity was significantly greater for high- than low-
precision images (Fig. 4a; CA1: p =0.015; ERC: p =0.007; permutation
tests). However, both regions also exhibited similar effects for E2-E3
similarity (Fig. 4a; CA1: p = 0.025; ERC: p = 0.036, permutation tests).
Neither region exhibited a significant effect for E1-E3 similarity (Fig. 4a;
ps > 0.28).

To further explore this pattern of results, we performed three
follow-up sets of analyses. First, in order to control for potential tem-
poral lag effects (Supplementary Fig. 3), we ran amixed-effects logistic
regression model that predicted temporal memory from pattern
similarity of each exposure pair (E1-E2, E2-E3, and E1-E3 as separate
dependent variables in one regression model) while including lag
information. For both CA1 and ERC, E1-E2 similarity significantly pre-
dicted temporal memory (Fig. 4c; CA1: β = 1.048, p =0.014, 95% CI =
[0.21, 1.88]; ERC:β = 1.565,p =0.022, 95%CI = [0.22, 2.91]). Effectswere
marginally significant for E2-E3 similarity (ps < 0.10), and not sig-
nificant for E1-E3 similarity (ps > 0.68).

Second, in order tomore directly assess whether E1-E2 similarity
contained predictive power above and beyond that of other expo-
sure pairs, we compared the performance of several models that did
or did not include various exposure pairs. That is, we tested whether
model performance was significantly improved when E1-E2 similarity
was added to models that only included E2-E3 and E1-E3 similarity.
For both CA1 and ERC, adding E1-E2 as a predictor significantly
improved the model’s performance (CA1: χ2 = 6.147, p = 0.013; ERC:
χ2 = 5.315, p = 0.021). In contrast, adding E2-E3 and E1-E3 similarity as
predictors to models with just E1-E2 similarity did not improve the
model’s performance (ps > 0.15). These results established that E1-E2
similarity was uniquely important for subsequent temporal memory
judgments, as would be predicted by a context reinstatement
account.

Third, to further establish whether E1-E2 similarity was uniquely
important for temporal memory, we tested for relationships between
different exposure pairs and recognition memory confidence. Inter-
estingly, although PHC pattern similarity across exposures was highly
predictive of subsequent recognition memory confidence (Fig. 3e),
this effect was not driven by E1-E2 similarity (Fig. 4b; p =0.482, per-
mutation test; Fig. 4d; p = 0.225; linear mixed-effects regression).
Instead, E1-E3 similarity in PHC significantly predicted recognition
confidence (Fig. 4b; p = 0.002; Fig. 4d; β =0.473, p =0.018, 95% CI =
[0.08, 0.86]). Along with the results described above, these findings
provide a qualitative dissociation between the predictors of temporal
memory versus recognition memory. That is, whereas pattern simi-
larity between the first and second exposure of an image was uniquely
important for remembering when the image was first encountered, it
was relatively less important for recognizing whether the image was
previously encountered.
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Fig. 2 | Behavioral results. a Recognition performance for each participant
quantified by hit rate and false alarm (FA) rate. Hit rateswere reliably above FA
rates (two-tailed paired t-test; t7 = 8.24, p < 0.001, Cohen’s d = 1.56, 95% CI =
[0.2, 0.36]), indicating above-chance recognition memory. b Overall recog-
nition performance (d’) separated by confidence levels. Recognition accuracy
increased with subjective confidence levels (one-way repeated-measures
ANOVA; F2,14 = 16.66, p <0.001, η2 = 0.70). c Correlation between estimated
and actual temporal positions. Participants showed above-chance accuracy in
temporal memory judgments (group-level β =0.302, p < 0.001, 95%CI = [0.24,
0.36], linear mixed-effects regression, n = 8 independent participants). Each
color shaded line indicates a participant. d Individual participant’s temporal
memory performance compared to chance level. Density plots compare the
standard error of the mean (SEM) of the observed temporal memory error
(yellow line) to the null distribution (blue density; estimated by permuting
estimated temporal judgments across images within each participant,
n = 1000 permutations). Throughout the figure, error bars reflect mean ±
s.e.m.; dots or colors denote individual participants (n = 8); ***p <0.001.
Source data are provided as a Source data file.
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CA1 and ERC predict temporal memory via image-specific
representations
While all of the preceding representational similarity analyses were
performed by correlating activity patterns across repeated exposures
of the same stimulus (i.e., image-specific correlations), these analyses
do not guarantee that the information that predicted temporal mem-
ory precision was specific to individual images. Namely, it is possible
that temporal memory precision benefited from generic memory
processes or attentional states that generalized across images (e.g.,
states optimized for memory encoding31). While this possibility would
still support a role for CA1 and ERC in encoding temporal information,

a temporal context reinstatement account fundamentally predicts
reinstatement of the specific temporal context in which an image was
encoded.

To assess whether temporal memory was predicted by image-
specific pattern similarity, we conducted two additional analyses
(restricted to E1-E2 similarity). First, for all of the images tested in the
temporal memory test, we permuted the E1-E2 mappings by shuffling
images’ E2within eachparticipant.We then calculated the resulting E1-
E2 pattern similarity scores and a corresponding distribution of beta
values reflecting the relationships with temporal memory (see
“Methods” for details). Critically, for both CA1 and ERC, the

CA1 CA2/3/DG

ERC PRC PHC

a b

Posterior

Anterior

LH

RH

Example hand-drawn MTL Representational Similarity Analysis

Averaged 
similarity 

E1

E2

E3

Final 
memory

r(E1, E2)

r(E2, E3)

r(E1, E3)

• Temporal memory
  (high vs. low precision)
• Recognition confidence
  (from 1 to 6)

.. ..

.. ..

.. ..

c

d e

Pa
tte

rn
 s

im
ila

rit
y 

(z
)

Pa
tte

rn
 s

im
ila

rit
y 

ef
fe

ct
 

on
 te

m
po

ra
l p

re
ci

si
on

 (β
)

Pa
tte

rn
 s

im
ila

rit
y 

ef
fe

ct
 

on
 re

co
gn

iti
on

 c
on

fid
en

ce
 (β

)

Temporal memory Recognition memory

**

**

(*) ***

** **(*) ~

CA1 CA2/3/DG

ERC PRC PHC

a b

Posterior

Anterior

LH

RH

Example hand-drawn MTL Representational Similarity Analysis

Averaged 
similarity 

E1

E2

E3

Final 
memory

r(E1, E2)

r(E2, E3)

r(E1, E3)

• Temporal memory
  (high vs. low precision)
• Recognition confidence
  (from 1 to 6)

.. ..

.. ..

.. ..

c

d e

Pa
tte

rn
 s

im
ila

rit
y 

(z
)

Pa
tte

rn
 s

im
ila

rit
y 

ef
fe

ct
 

on
 te

m
po

ra
l p

re
ci

si
on

 (β
)

Pa
tte

rn
 s

im
ila

rit
y 

ef
fe

ct
 

on
 re

co
gn

iti
on

 c
on

fid
en

ce
 (β

)

Temporal memory Recognition memory

**

**

(*) ***

** **(*) ~

Fig. 3 | CA1 and entorhinal representational similarity predicted temporal
memory precision, but not recognition confidence. a Manually drawn ROIs for
MTL subregions of an example participant: CA1 (purple), CA2/3/DG (red), ERC
(yellow), PRC (blue), and PHC (green). LH/RH: left/right hemisphere. b Schematic
depiction of representational similarity analysis. c Pattern similarity difference
between high- and low-precision images (median split) across MTL subregions and
a control early visual region (V1). CA1 and ERC showed greater pattern similarity
across exposures for high-precision images relative to low-precision images (CA1:
p =0.004; ERC: p =0.004; one-sided permutation tests, n = 1000). CA2/3/DG
showed similar effect but did not survive correction for multiple comparisons
(p(uncorrected) =0.023). d Relationship between pattern similarity across expo-
sures and temporal memory precision. Pattern similarity across repeated expo-
sures in CA1 and ERC predicted temporal memory precision (high vs. low) while

accounting for temporal lag information (CA1: β = 2.134, p =0.005, 95% CI = [0.63,
3.64]; ERC: β = 3.207, p =0.008, 95% CI = [0.83, 5.58]; logistic mixed-effects
regression, n = 8 independent participants). A similar effect was also observed in
CA2/3/DG (p(uncorrected) =0.037), but did not survive correction for multiple
comparisons. e Relationship between pattern similarity across exposures and
recognition confidence. Pattern similarity across repeated exposures in PHC pre-
dicted recognition confidence while accounting for temporal lag information
(β =0.799, p < 0.001, 95% CI = [0.34, 1.25]; liner mixed-effects regression).
Throughout the figure, error bars reflect mean ± s.e.m.; dots denote independent
participants (n = 8); ~p <0.10; *p <0.05; **p <0.01; ***p <0.001. Parentheses indi-
cate ROIs that did not survive multiple comparison correction. Source data are
provided as a Source data file.
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relationship between ‘intact’ E1-E2 similarity and temporal memory
was significantly stronger (higher beta values) than the permuted
values (Fig. 5a; CA1: p =0.019; ERC: p =0.025). These data provide
important evidence that temporal memory precisionwas predicted by
image-specific pattern similarity in CA1 and ERC.

As a follow-up to the preceding analysis, we ran a final analysis to
address whether apparent image-specific effects might be due to
general memory states and/or differences in coarse temporal context
information (i.e., session effects). Thus, for each image included in the
temporal memory test (a ‘target’), we identified control images (‘foils’)
such that the targets and foils shared the same E1 session number, but
not scanning run (to avoid potential contamination from auto-
correlation in the fMRI data), and the same E2 session number (but not
run; Fig. 5b). To match recognition memory with targets, foils were
only included in this analysis if they were correctly rejected at E1 and
successfully recognized at E2 and E3 (see “Methods” for details). This
allowed us to compute similarity between target E1 and target E2
(target similarity) and target E1 and foils E2 (foil similarity). The dif-
ference between these measures (target similarity − foil similarity) was
then used as a predictor of temporal memory precision. Indeed, this
similarity difference score significantly predicted temporal memory
precision for both CA1 (Fig. 5c; β =0.864, p =0.033, 95% CI = [0.07,
1.66]) and ERC (Fig. 5c; β = 1.308, p = 0.047, 95% CI = [−0.02, 2.60]).
These findings lend further support to the idea that temporal memory
precisionwas related to image-specific pattern similaritymeasures and
specifically argue against potential confounds due to genericmemory-
related processes or session effects. The fact that these effects held
when carefully controlling for session effects is notable because it

provides evidence against the possibility that pattern similarity only
captured coarse-level temporal context (session information). Rather,
to the extent that the pattern similarity measure captured temporal
context information, thesefindings suggest a relatively ‘local’ temporal
context representation that differentiated between images within the
same session (day).

Discussion
The ability to remember when events occurred in time is fundamental
to human experience. However, retaining precise temporal memories
is complicated by the fact that real-world episodicmemories span long
timescales (days, weeks, months and beyond) and by the fact that
events may re-occur in multiple contexts over those long timescales
(e.g., a movie you have viewed several times over the past year). To
date, there is remarkably little evidence characterizing how the human
brain preserves temporal memories in the face of these challenges.
Here, we show that when events re-occur over long timescales (at lags
up to several months), the re-expression of distributed, event-specific
activity patterns in CA1 and ERC preserves memory for the original
temporal context of an event (i.e., memory for when an event first
occurred). Thesefindings are consistentwith andbridgebetweenprior
human and rodent studies implicating CA1 and ERC in temporal pro-
cessing and temporal memory. However, our findings also go beyond
existing evidence by providing a mechanistic account of how CA1 and
ERC preserve temporal memories and demonstrating these relation-
ships at uniquely long timescales.

While there is a rich history characterizing temporal memory in
human behavioral and neuroimaging studies32,33, it is striking how few
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Fig. 4 | Pattern similaritybetween thefirst and second exposure inCA1 andERC
was uniquely important for temporal memory. a CA1/ERC pattern similarity
between high- and low-precision images for each pair of image exposures. CA1 and
ERC showed greater pattern similarity for high-precision images relative to low-
precision images in E1-E2 (CA1: p =0.015; ERC: p =0.007; permutation test,
n = 1000) and E2-E2 (CA1: p =0.025; ERC: p =0.036; permutation test). b PHC
pattern similarity between hits and misses in recognition memory for each pair of
image exposures. PHC showed greater pattern similarity for hits relative to misses
in E1-E3 (p =0.002; permutation test, n = 1000). c Relationship between pattern
similarity for each pair of image exposures in CA1/ERC and temporal memory

precision while accounting for temporal lag information. For both CA1 and ERC, E1-
E2 pattern similarity was significantly predictive of temporal memory precision
(CA1: β = 1.048, p =0.014, 95% CI = [0.21, 1.88]; ERC: β = 1.565, p =0.022, 95% CI =
[0.22, 2.91]; logistic mixed-effects regression, n = 8 independent participants).
d Relationship between pattern similarity for each pair of image exposures in PHC
and recognition confidence while accounting for temporal lag information.
Recognition confidencewas predicted by E1-E3 pattern similarity in PHC (β =0.473,
p =0.018, 95% CI = [0.08, 0.86]; linear mixed-effects regression). Error bars reflect
mean ± s.e.m.; dots denote independent participants (n = 8); ~p <0.10; *p <0.05;
**p <0.01. Source data are provided as a Source data file.
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of these studies have considered temporal memory across timescales
that exceed a single experimental session. Indeed, our approach of
testing temporal memory for images that were distributed across
dozens of experimental sessions/scans spanning 8–10 months is
unprecedented. Considering that the overwhelming majority of real-
world episodic memories span days, weeks, months and years, it is
imperative to understand the neural mechanisms that support tem-
poral memory at these timescales. Although it is intuitively obvious
that humans can and do retain temporal memories over long time-
scales, it is nonetheless remarkable that participants in the current
studywere generally successful at recalling the initial temporal context
for images presented at the final memory test given that (a) these
images were drawn from a pool of tens of thousands of images, (b) the
delay between the initial exposure and the final memory test ranged
from days to almost a year, and (c) each image was presented in
multiple temporal contexts, creating potential interference. Thus, by
simulating the challenges that are inherent to real-world temporal
memory, our experimental paradigmprovides a uniqueopportunity to
characterize the underlying neural mechanisms.

By leveraging representation-based analyses to track patterns of
activity across repeated stimulus exposures and distinct temporal
contexts, we were able to gain critical insight into the mechanisms
through which CA1 and ERC contribute to temporal memory. In par-
ticular, our findings strongly align with a context reinstatement
account. According to temporal context models20,27, context repre-
sentations—reflected in distributed patterns of neural activity—gradu-
ally change over time and are reinstated when a stimulus is
subsequently remembered34–40. This temporal context reinstatement
is thought to directly support the ability to remember—or infer—when
in time stimuli were previously encountered29. From this perspective,

our finding that greater pattern similarity across exposures preserved
memory for an event’s original temporal context can be explained in
terms of the original context representation (elicited during E1) being
reinstated and strengthened during subsequent exposures (E2, E3)41

and ultimately guiding temporal memory judgments at the end of the
experiment. In fact, this account also readily explains our finding that
similarity between the first and second exposure (E1, E2) was uniquely
important for temporal memory. Namely, E2 represented the first
potential ‘reminder’ of E1’s temporal context. Interestingly, although
we tested for re-expression of E1’s activity patterns by explicitly re-
exposing participants to the same stimulusmultiple times (E2, E3), our
findings likely generalize to situations where stimuli are not explicitly
re-exposed (or re-encountered). Indeed, human neuroimaging studies
(unrelated to temporal memory) have found that offline, spontaneous
reinstatement of episodic memories not only occurs, but it strength-
ens memories in much the same way that online, cued reinstatement
does42.

While a context reinstatement account makes a clear prediction
that better memory for the original temporal context should be
associatedwith greater representational similarity across exposures, it
is notable that a memory interference account25 suggests an entirely
opposite prediction: that temporal memory would benefit from
greater contextual distinctiveness across exposures (i.e., less similar-
ity). More specifically, greater contextual distinctiveness would puta-
tively be expected to reduce interference between the various
temporal contexts in which an event occurred (E1, E2, E3). That said,
there are several examples in the memory interference literature
where reinstatement of prior experiences during new learning can, in
fact, protectmemories from interference43,44.Moreover, it is important
to note that a context reinstatement account for CA1 and ERCdoes not
exclude the possibility that other MTL regions (e.g., CA3) might
simultaneously contribute to temporal memory by emphasizing dif-
ferences between temporal contexts45–48.

The fact that we specifically identified CA1 and ERC as being
important for temporal memory at long timescales—and the implica-
tion that these regions supported temporal context reinstatement—is
striking in light of accumulating evidence documenting time sensitive
cells within rodent CA1 and ERC12–14. It has been speculated that
ensembles of these cells allow for the coding of gradually-drifting
temporal context representations which become bound to individual
events19 and reinstated when events are remembered20,27. Importantly,
although individual cellsmayonly operate across very short timescales
(seconds), ensemble representations can track temporal information
over much longer timescales—fromminutes to days18,49. Here, we were
not able to directly measure or identify time cells because, even with
the relatively high spatial resolution of the current fMRI data, each
voxel likely pooled across tens or hundreds of thousands of cells.
However, the representation-based analyses we employed are poten-
tially well-suited to capturing gradual changes in ensemble-level con-
text representations26,35,36,50–53. In contrast, although several prior
studies of human memory have also implicated CA1 and ERC in
memory for when events occurred21,22, most of these studies have not
employed representation-based analyses and, therefore, are not
amenable to testing or capturing temporal context representations.
Thus, our approach and findings uniquely bridge between evidence of
timecells in rodents, theoreticalmodelsof temporal context, andprior
studies of temporal memory in humans.

An additional essential consideration in understanding neural
mechanisms that specifically relate to temporal memory is to establish
that any apparent effects related to temporal memory were not deri-
vative from more general effects of memory strength. Specifically, as
memories decay over time, temporal judgments could potentially be
inferred from the strength of memories themselves54–56. This is of
particular concern given the very long timescales involved in the cur-
rent study. However, several theoretical perspectives propose that
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Fig. 5 | Representational image-specificity analyses. a Intact compared to per-
muted similarity effect. E1-E2 pattern similarity compared to permuted similarity
exhibited a stronger effect on temporal memory precision in both CA1 and ERC
(CA1: p =0.019; ERC: p =0.025; permutation tests, n = 1000). b Schematic illustra-
tion showinghowtarget similarity and foil similaritywerecomputed for anexample
image (see “Methods” for details). c Relationship between image-specific pattern
similarity (target similarity − foil similarity) in CA1/ERC and temporal memory
precision. Image-specific pattern similarity was significantly predictive of temporal
memory precision in both CA1 and ERC (CA1: β =0.864, p =0.033, 95% CI = [0.07,
1.66]; ERC: β = 1.308, p =0.047, 95% CI = [−0.02, 2.60]; logistic mixed-effects
regression, n = 8 independent participants). Error bars reflect mean ± s.e.m.;
~p <0.10; *p <0.05. Source data are provided as a Source data file.
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memory for time is dissociable frommemory strength33,57,58. Here, our
final memory test separately measured recognition confidence (a
proxy for overallmemory strength) and temporalmemory, allowing us
to conduct several targeted analyses aimed at teasing apart these two
expressions ofmemory. First, we found that the relationships between
CA1/ERC and temporal memory precision remained significant in a
regression model that included recognition confidence as a covariate.
Second, consistent with prior arguments that distinct MTL subregions
are involved in ‘item-based’ versus ‘context-based’memory59, we found
that pattern similarity measures in PHC predicted recognition con-
fidence but not temporal memory, whereas pattern similarity mea-
sures in CA1 and ERC predicted temporal memory but not recognition
confidence. Finally, when considering pattern similarity across specific
pairs of image exposures, temporal memory (defined here as memory
for when the first exposure occurred) was best predicted by pattern
similarity between the first and second exposures, consistent with a
context reinstatement account. In contrast, recognition confidence
was best predicted by pattern similarity between the first and third
exposures, potentially indicating that the last (third) exposure was
relatively more influential to memory strength (also see Supplemen-
tary Fig. 3). Together, these data points provide important, converging
evidence that temporal memory judgments in the current study were
not derived from the overall memory strength. More generally, our
findings reinforce theoretical accounts that emphasize the distinction
between memory for ‘when’ an event occurred versus ‘whether’ an
event occurred5,6,60,61.

In conclusion, here we show that memory for the temporal con-
text in which an event initially occurred is preserved via the re-
expression of activity patterns in human CA1 and ERC. Critically, we
show that these dynamics operate across—and support memory at—
long timescales (fromdays tomonths). Thesefindings complement yet
significantly advance existing evidence from rodents and humans
implicating the hippocampal-entorhinal system in representing and
remembering time. In particular, our findings suggest that distributed
patterns of activity in CA1 and ERC encode and reinstate temporal
context information, thereby preserving memory for when events
occurred.

Methods
Participants
Eight participants took part in the study (two self-identified males, six
self-identified females; age range: 19–32). All participants were right-
handed with no known cognitive deficits nor color blindness and with
normal or corrected-to-normal vision. Participants were naïve to the
experimental manipulation and were not involved in the design nor
planning of the study. Informed written consent was obtained from all
participants before the start of the study, and the experimental pro-
tocol was approved by the University of Minnesota Institutional
Review Board.

Design and procedure
Data used in this study were collected as part of the Natural Scenes
Dataset (NSD; http://naturalscenesdataset.org), and included two
parts: a continuous recognition phase conducted in the fMRI scanner
and a behavioral final memory phase (Fig. 1a).

Continuous recognition phase. A detailed description of the con-
tinuous recognition phase has been reported in a previous
publication30. Briefly, for each participant, the continuous recogni-
tion phase was split across 40 scan sessions in which 10,000 distinct
color natural scenes would be presented three times spaced pseudo-
randomly over the course of all scan sessions using Psychophysics
Toolbox 3.0.14. Each scan session consisted of 12 runs (750 trials).
Distributions of image presentations were controlled such that both
short-term and long-term re-exposures were probed (see Stimuli

section below). Four of the participants completed the full set of 40
NSD scan sessions. Due to constraints on participant and scanner
availability, each of the other four participants completed 30–32 scan
sessions. In these collected data, each participant viewed
9209–10,000 distinct images and participated in 22,500–30,000
trials. Each trial lasted 4 s, consisting of the presentation of an image
for 3 s and a following 1-s gap. Participants were instructed to perform
a continuous recognition task in which they reported whether the
current image had been seen at any previous point in the experiment.

Final memory phase. At least two days (range: 2–7 days) after com-
pletion of the continuous recognition phase, a final memory test was
administered outside of the scanner. Participants were not informed
about the final memory test in advance. During the final memory
phase, participants viewed a subset of old images (220 per participant)
from the continuous recognition phase randomly intermixed with
novel images (100 per participant) and completed different types of
memory probes. The final memory phase consisted of 320 trials, with
up to three judgments per trial. Each trial beganwith a recognition test
in which participants performed an old or new judgment with a con-
fidence rating on a scale of 1 to 6 (1: ‘high confidence new’, 2: ‘medium
confidence new’, 3: ‘low confidence new’, 4: ‘low confidence old’, 5:
‘medium confidence old’, 6: ‘high confidence old’). For images judged
as “old”, a frequency test followed in which participants were asked to
indicate howmany times they had seen each image (1, 2, 3, or 4 ormore
times). Following the frequency test, participants performed a tem-
poralmemory test using a timeline. In this test, participantswere asked
to indicate, on a continuous timeline with tickmarks to represent each
session, when in the experiment they thought each image was first
encountered (Fig. 1c, right). The length and labels of the timeline vary
across participants, depending on howmany sessions they completed
in the continuous recognition phase. Participants were encouraged to
use the full length of the scale, with the left endpoint representing the
beginning of the continuous recognition phase and the right endpoint
representing the end. Participants used a cone to mark the temporal
location on the line and were instructed to indicate their confidence in
response via adjusting the size of the cone, with smaller cones repre-
senting higher confidence and bigger cones representing lower con-
fidence (see Supplementary Movie 1 for depiction of example trials).
Given the primary focus of the present study concerns temporal
memory precision, we only analyzed the estimates of temporal loca-
tion as illustrated in Fig. 1c. All tests in the final memory phase were
self-paced with a timeout of 30 s.

Stimuli
All images used in this study were taken from the Microsoft Common
Objects in Context (COCO) database62.

Continuous recognition phase. For the continuous recognition
phase, a total of 73,000 images were prepared with the intention that
each participant would view 10,000 distinct images (9000 unique
images and 1000 shared images across participants) three times each
over the course of 40 scan sessions. To prevent the recognition task
from becoming too difficult (and risking loss of morale), each image
was randomly placed three times on a circle according to a probability
distribution created by mixing a relatively narrow von Mises distribu-
tion and a uniform distribution. Across all scan sessions, the mean
number of distinct images shown once, twice, and all three times
within a typical session is 437, 106, and 34, respectively.

Final memory phase. The final memory phase included a total of 320
images for each participant: 220 old images and 100 novel images. Old
images were selected from the continuous recognition phase that
participants completed during fMRI scanning with each image having
been presented three times during the continuous recognition phase.
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Novel images were from the COCO dataset but were not presented
during the continuous recognition phase.

The 220 old images included in the final memory test were com-
prised of two sets of images selected according to different criteria.
The first set comprised 120 images that were selected based on
behavioral accuracy and the distribution of exposures during the
continuous recognition phase. Specifically, these imageswere selected
based on the following three criteria: (1) Each of the 120 images was
associated with a correct behavioral response at each exposure during
the continuous recognition phase—i.e., correct rejection (E1), hit (E2),
and hit (E3). (2) To promote overall temporal memory performance,
approximately half of the selected images were associated with a first
exposure (E1) that occurred during the last eight scan sessions (for one
participant, this was adjusted to the last ten scan sessions in order to
have enough trials given their performance in the continuous recog-
nition phase); the other half of the selected images were associated
with a first exposure that occurred from the rest of the scan sessions
(i.e., earlier sessions). (3) For each half of the images, there was an
additional constraint on the spacing between exposures, with one-
third of the images having all three exposures within one scan session,
one-third with the last two exposures in the same session, and the rest
either with the first two exposures in the same session or with all three
exposures across different sessions.

The second set of 100 old images included during the final
memory test were selected to maximally span semantic space (see the
NSD data paper30 for details), without consideration of behavioral
accuracy and distribution of exposures. Briefly, this was done by
computing shifted inverse frequency sentence embeddings for the
sentence captions, and using a greedy approach to determine the
subset of 100 images that maximize the average distance between
each image’s embedding and its closest neighbor. The motivation for
sampling semantic space was unrelated to the goals of the current
manuscript. However, in order to increase statistical power, we opted
to include images from the second set in our analyses but only for
images that were associated with correct behavioral responses for
each of the three exposures in the continuous recognition phase (as
was the case for the first set). This resulted in a total of 143-170 images
that were used for analyses for each participant (see Supplementary
Fig. 4 for the distribution of images’ first exposures across
participants).

MRI data acquisition and preprocessing
The imaging data was collected as part of the NSD at the Center for
Magnetic Resonance Research at the University of Minnesota. In brief,
functional data and a few additional anatomical measures were col-
lected using a 7T SiemensMagnetompassively-shielded scannerwith a
single-channel-transmit, 32-channel-receive RF head coil (Nova Medi-
cal, Wilmington, MA). Functional data was acquired using whole-brain
gradient-echo echo-planar imaging (EPI) at 1.8-mm resolution and 1.6-s
repetition time. In addition to the EPI scans, for the purposes of hip-
pocampal segmentation, a high-resolution T2-weighted scan was
acquired during one of the 7 T scan sessions. T1- and T2-weighted
structural scans were collected using a combination of a 3T Siemens
Prisma scanner and a standard Siemens 32-channel RF head coil.

Functional data were pre-processed by performing one temporal
resampling to correct for slice time differences and one spatial
resampling to correct for headmotionwithin and across scan sessions,
EPI distortion and gradient non-linearities. Informed by the original
data paper30, the current study used the upsampled 1.0-mm high-
resolution preparation of the NSD data in order to optimally partition
the functional data into regions of interest defined using high-
resolution anatomical images.

Parameter estimates (beta weights) reflecting fMRI response
amplitudes evoked by each trial were estimated using a general linear
model (GLM) approach as described in the NSD data paper30. Notably,

our approach (which corresponds to “beta version 2” in the NSD data
paper) involved generating voxel-specific hemodynamic response
functions (HRFs). Briefly, the pre-processed time-series data were fit-
ted multiple times with a single-trial GLM, each time using a different
HRF from a library of HRFs. For each voxel, the HRF that provided the
best fit to the data was identified and single-trial betas were then
generated using that HRF. Betas were then converted to units of per-
cent BOLD signal change by dividing amplitudes by the mean signal
intensity observed at each voxel and multiplying by 100. Our decision
to use voxel-specific HRFs was made a priori and was motivated by
evidence from the original data paper that it leads to fewer artifacts.

Regions of interest (ROIs)
The medial temporal lobe (MTL) ROIs were manually drawn on the
high‐resolutionT2 images obtained for eachparticipant, following a 7T
protocol for segmentation of MTL subregions63. Labels were defined
on the raw high-resolution T2 volume, and were mapped via an affine
transformation to subject-native anatomical space. The MTL ROIs
included bilateral CA1, CA2/3/dentate gyrus, entorhinal cortex (ERC),
perirhinal cortex (PRC), and parahippocampal cortex (PHC). Example
MTL ROIs from one participant were depicted in Fig. 3a. We also
included the primary visual cortex (V1) as a control region. The bilat-
eral V1 ROIwasmanually drawnoncortical surfaces based on results of
a population receptive field experiment from the NSD, and were then
mapped to volumetric format. Cortical ROIs for the whole-brain parcel
level analysis were defined by amulti-modal cortical parcellation from
the Human Connectome Project64.

Behavioral data analyses
Overall performance for the temporal memory test was quantified
by regressing each participant’s subjective estimate of when an
image was first encountered against the actual (objective) time
(Fig. 2c). Note that there is a general response bias among parti-
cipants toward the center of the timeline (“raw estimated posi-
tion”, see Supplementary Fig. 2). To account for this response bias
and potential non-linearity, the estimated and actual temporal
positions used in all analyses in the current paper were converted
to ranks according to each individual’s marked positions on the
timeline and the actual temporal positions in the continuous
recognition phase, respectively. To quantify item-wise temporal
memory error, we calculated the absolute difference between the
ranked estimated temporal position and the ranked actual posi-
tion (Fig. 1e). To test whether each participant had above-chance
temporal memory performance, we compared the observed tem-
poral memory error against a null distribution of permutations
(1000 iterations), in which the subjective estimates were randomly
shuffled across trials for each participant and the temporal mem-
ory error was recomputed for each iteration. Due to the non-
normal distribution of temporal error (absolute value of the dif-
ference of two rank distributions, see Supplementary Fig. 5), we
divided temporal memory trials into ‘high-precision’ and ‘low-
precision’ groups by performing a median split of temporal error
for each participant. This was an a priori decision (i.e., made before
conducting any fMRI analyses).

To control for temporal lag information and test for relationships
between lag and subsequent memory performance (Supplementary
Fig. 3), as illustrated in Fig. 1d, four temporal lags were calculated for
each image: the lag between the beginning of the continuous recog-
nition phase and thefirst exposure (lag0), the lagbetween thefirst and
second exposure (lag 1), the lag between the second and third expo-
sure (lag 2), and the lag between the third exposure and the final
memory phase (lag 3). The first scan session of the continuous
recognition phase for each participant corresponds to Day 0. Because
memory is observed to abide by an exponential rule rather than linear
time65, all temporal lags were quantified by expressing time intervals in
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seconds and transforming these intervals with the natural logarithm.
Lag effects were then tested using mixed-effects regression models
with either recognition confidence or temporal memory precision as a
dependent variable andwith each temporal lag as a separate predictor.

Representational similarity analyses
Representational similarity analyses were conducted on functional
data (single-trial betas) from the continuous recognition phase, and
were performed by assessing patterns of neural activity across voxels
within each ROI evoked during single trials. Pattern similarity of all
possible exposure pairings (Fig. 3b; r(E1, E2), r(E2, E3), and r(E1, E3)) for
each image was computed using Pearson correlation. The resulting
correlation coefficients were then Fisher-transformed for further
analyses. To avoid potential contamination of similarity from scanner-
induced autocorrelation of signals, only correlations between image
exposures that occurred across runs were considered (range of the
trials excluded for each participant: 12–35).

Image-specificity analyses
We used two approaches to assess image-specificity in CA1 and
entorhinal representations that predicted temporal memory.

Intact versus shuffled pattern similarity analysis. Our first analysis
tested whether temporal memory precision was predicted by image-
specific pattern similarity (restricted to E1-E2 similarity) in CA1 and ERC
using images tested in the temporal memory test (which were a subset
of the full image set). Specifically, we randomly shuffled the E1-E2
mappingswithin eachparticipant, such that each image’s E1was paired
with a different image’s E2.We then computed the pattern similarity of
these shuffled exposure pairs and the new corresponding temporal
lags. The shuffled E1-E2 pattern similarity scores and temporal lag
informationwere then submitted to amixed-effects logistic regression
model predicting temporal memory precision. This procedure was
performed 1,000 times, resulting in a null distribution of pattern
similarity effects (betas values) for each ROI.

Target versus foil pattern similarity analysis. Our second approach
examined whether pattern similarity effects observed in CA1 and ERC
were specific to individual images or were driven by general memory-
related processes that could be shared across different images and/or
differences in coarse temporal information (i.e., session effects). To do
this, for each image included in the temporal memory test (a ‘target’),
we identified control images (‘foils’) according to two criteria: (1) tar-
gets and foils shared the same E1/E2 session number, but not run
number, respectively (Fig. 5a); (2) to control for genericmemory states
(recognition memory performance at each encounter), foils had to
receive the same memory judgments as targets (i.e., to be responded
correctly all three times), which were correctly rejected at E1 and hit at
E2 and E3. We then computed pattern similarity between target E1 and
target E2 (‘target similarity’) and target E1 and foils E2 (‘foil similarity’).
This selection procedure resulted indifferent numbers of foils for each
target image. For images with two or more foils, we used the median
value of those foil similarity scores. To index the extent to which
pattern similarity captures image-specific representations, foil simi-
larity was subtracted from target similarity for each image (target
similarity − foil similarity). This difference score between target and
foil similarity was then submitted to amixed-effects logistic regression
model as a predictor of temporal memory precision, where a sig-
nificant positive relationship would indicate that the pattern similarity
that predicted temporal memory precision was driven by image-
specific representations.

Statistical analyses
Behavioral and fMRI data were analyzed using a combination of
permutation tests, paired t tests, repeated-measures ANOVA, and

mixed-effects regressionmodels. Trial-level relationships between
similarity measures and final memory performance were tested
with mixed-effects linear/logistic regression models (for recogni-
tion confidence and temporal memory precision, respectively).
For all permutation analyses, we used 1000 permutations and
assessed significance by computing the proportion of values in the
null distribution that were higher/lower than the observed values.
All t tests were two-tailed. For mixed-effects regressionmodels, we
used the participant as a random effect and other variables as fixed
effects. A threshold of p < 0.05 was used to establish statistical
significance for all analyses. fMRI analyses were corrected for
multiple comparisons with Bonferroni corrections when applic-
able. Only ROIs that survived correction are reported except where
otherwise noted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The NSD dataset is freely available at http://naturalscenesdataset.org.
Images used forNSDwere taken from the CommonObjects in Context
database (https://cocodataset.org). Source data are provided with
this paper.

Code availability
Code formain analyses canbe found at: https://github.com/futingzou/
nsdFinalMem.
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