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a b s t r a c t 

The same visual input can serve as the target of perception or as a trigger for memory retrieval depending 
on whether cognitive processing is externally oriented (perception) or internally oriented (memory retrieval). 
While numerous human neuroimaging studies have characterized how visual stimuli are differentially processed 
during perception versus memory retrieval, perception and memory retrieval may also be associated with distinct 
neural states that are independent of stimulus-evoked neural activity. Here, we combined human fMRI with full 
correlation matrix analysis (FCMA) to reveal potential differences in "background" functional connectivity across 
perception and memory retrieval states. We found that perception and retrieval states could be discriminated with 
high accuracy based on patterns of connectivity across (1) the control network, (2) the default mode network 
(DMN), and (3) retrosplenial cortex (RSC). In particular, clusters in the control network increased connectivity 
with each other during the perception state, whereas clusters in the DMN were more strongly coupled during 
the retrieval state. Interestingly, RSC switched its coupling between networks as the cognitive state shifted from 

retrieval to perception. Finally, we show that background connectivity (1) was fully independent from stimulus- 
related variance in the signal and, further, (2) captured distinct aspects of cognitive states compared to traditional 
classification of stimulus-evoked responses. Together, our results reveal that perception and memory retrieval 
are associated with sustained cognitive states that manifest as distinct patterns of connectivity among large-scale 
brain networks. 
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. Introduction 

When a familiar visual stimulus (e.g., a colleague) is encountered,
t might serve as the target of perceptual scrutiny (e.g., their current
acial expression) or the trigger for episodic memory retrieval (e.g.,
omething they said in the past). Numerous cognitive theories and neu-
oimaging studies have contrasted the cognitive processes and brain re-
ions engaged during perception versus retrieval ( Bosch et al., 2014 ;
hun and Johnson, 2011 ; Kosslyn et al., 1995 ; McClelland et al., 1995 ;
’Reilly and McClelland, 1994 ; Polyn et al., 2005 ; Wheeler et al., 2000 ).
he majority of this work has focused on investigating the operations
erformed upon the stimulus , such as how the stimulus is encoded into
ong-term memory or how the stimulus is used to drive memory recol-
ection ( Favila et al., 2020 ; Fernandez et al., 2022 ; Kim, 2013 ). How-
ver, evidence also suggests that perception and memory retrieval are
haracterized by distinct ‘states’ that are sustained over time and inde-
endent from external stimuli ( Duncan et al., 2012; Ezzyat et al., 2017;
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uderian et al., 2009; Hasselmo et al., 1996 ). Characterizing how per-
eption and retrieval states are implemented in the brain represents an
mportant challenge, but one that is complicated by methodological and
nalytical factors. 

One potentially powerful way to characterize distinct cognitive
tates is by measuring patterns of functional connectivity within the
rain ( Cohen and D’Esposito, 2016 ; Fritch et al., 2021 ; Shirer et al.,
012 ; Song and Rosenberg, 2021 ). Functional connectivity is typically
omputed over extended windows of time and is therefore well-suited to
easure states that putatively persist across, or in the absence of, exter-
al stimuli. However, a critical issue in applying functional connectivity
uring cognitive tasks is that any observed correlations in neural activity
ay be largely or entirely driven by stimulus-evoked neural responses.
hat is, if two brain regions consistently respond to external stimuli,
his will induce apparent “connectivity ” between these regions. Several
MRI studies have addressed this concern by using “background ” con-
ectivity —an approach in which stimulus-evoked responses are explic-
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tly modeled and removed, with connectivity then computed using the
esidual (background) activity ( Al-Aidroos et al., 2012 ; Cole et al., 2019 ;
uncan et al., 2014 ; Norman-Haignere et al., 2012 ; Turk-Browne, 2013 ).
onceptually, this approach can isolate interactions between brain re-
ions that reflect sustained, endogenous processing as opposed to tran-
ient, exogenous responses to stimuli ( Summerfield et al., 2006 ; Turk-
rowne, 2013 ). 

To date, only a limited number of fMRI studies have used background
onnectivity to test for differences between perception and memory re-
rieval states ( Cooper and Ritchey, 2019 ; Duncan et al., 2014 ). More-
ver, these studies have only considered potential interactions (connec-
ivity) between a relatively limited number of brain regions. For exam-
le, Cooper and Ritchey (2019) examined background FC patterns exclu-
ively between a priori , memory-related brain regions in the posterior-
edial (PM) and anterior-temporal (AT) networks. They found that re-

ions in these networks exhibited stronger background connectivity dur-
ng retrieval compared to perception, providing important evidence that
erception versus retrieval states can be linked to stimulus-independent
rocesses. While this type of targeted, seed-based analysis is highly valu-
ble for testing specific hypotheses about regions of a priori interest,
t is inherently blind to interactions involving non-seed regions ( Turk-
rowne, 2013 ). In other words, discoveries are systematically biased
o come from the regions that are tested ( Wang et al., 2015 ). Thus,
here is value to unbiased approaches that allow for background FC to
e more comprehensively measured —ideally, across the whole brain.
hat said, while conducting whole-brain functional connectivity may
e theoretically appealing, it can be computationally intractable, par-
icularly if applied without down-sampling data. For example, brain
olumes consisting of 50,000 voxels would yield 1.25B voxel pairs
‘connections’) to analyze. For this reason, previous attempts to mea-
ure whole-brain functional connectivity have tended to substantially
educe the dimensionality of data by grouping voxels into regions or
arcels (e.g., Pantazatos et al., 2012 ; Shirer et al., 2012 ; Watanabe et al.,
012 ). 

Here, we sought to identify patterns of background connectivity as-
ociated with perception versus retrieval states using full correlation
atrix analysis (FCMA) applied to human fMRI data. In contrast, to typi-

al seed-based connectivity measures, FCMA comprehensively considers
onnectivity between every possible pair of voxels in the brain using so-
histicated approaches to overcome historical computational limitations
 Kumar et al., 2022 ; Turk-Browne, 2013 ; Wang et al., 2015 ). Specif-
cally, FCMA uses a combination of machine learning (support vec-
or machine; SVM) and parallel computing to efficiently map patterns
f connectivity to stimulus or task information ( Turk-Browne, 2013 ;
ang et al., 2015 ). The computational efficiency afforded by this ap-

roach is substantial in that it can reduce computation time from weeks
o hours and has the potential to reveal information in fine-grained
onnectivity patterns that would be missed by conventional seed-based
unctional connectivity ( Wang et al., 2015 ). We applied FCMA using an
xperiment that manipulated perception versus retrieval states while
arefully controlling for three potentially confounding variables: (1)
ubjects performed the same judgments on the same images across both
erception and retrieval tasks, minimizing differences in task demands
nd sensory content; (2) subjects were familiarized with the images
n all conditions, minimizing differences in novelty/encoding across
erception and retrieval; and (3) behavioral accuracy was matched
cross key conditions in an attempt to minimize differences in task
ifficulty. 

To preview, we report four main findings: (1) background connec-
ivity, which is orthogonal to evoked responses, allowed for classifica-
ion of perception versus retrieval states with remarkably high accuracy;
2) perception and retrieval states can be discriminated parsimoniously
ased on background connectivity patterns in a relatively small num-
er of clusters that span three functional communities: the control net-
ork, default mode network (DMN), and retrosplenial cortices (RSC);

3) connections within the control network were relatively stronger dur-
2 
ng perception states whereas connections within the DMN were rela-
ively stronger during retrieval states; and (4) RSC shifted its coupling
ith the control network and DMN as a function of cognitive state, sug-
esting that it acts as a hub for transitioning between perception and
etrieval. 

. Materials and methods 

.1. Subjects 

Twenty-seven adults with normal or corrected-to-normal vision were
ecruited to participate for monetary compensation at Princeton Univer-
ity. Three subjects were excluded due to excessive head motion for a
otal of 24 subjects in the current sample (eleven reported male, mean
ge = 23.3 years). The Princeton University Institutional Review Board
pproved the study protocol, and all subjects provided informed con-
ent. The sample size is on par with previous studies that examined func-
ional connectivity changes with memory ( Cooper and Ritchey, 2019 )
nd used FC patterns to differentiate task states ( Shirer et al., 2012 ). 

.2. Materials 

Stimuli consisted of 64 scene and 64 face images. The scene im-
ges were collected from the “Massive Memory ” dataset ( Konkle et al.,
010 ; http://konklab.fas.harvard.edu/#). The face images were ob-
ained from the FEI face database ( Thomaz and Giraldi, 2010 ;
ttps://fei.edu.br/ ∼cet/facedatabase.html) and contained emotionally
eural expressions. Scrambled images were generated as the weighted
verage between the actual image and its phase-scrambled version
 Oppenheim and Lim, 1981 ; Stojanoski and Cusack, 2014 ). The script
or creating the phase-scrambled images was adopted from code by
icolaas Prins (e.g., as described here: https://github.com/rordenlab/

pmScripts/blob/master/bmp _ scramble.m ). 

.3. Experimental design and procedure 

During the pre-scan training phase ( ∼20–30 min prior to scanning),
ubjects viewed randomly assigned pairs of images (always consisting
f one face and one scene) and indicated how successfully they were
n forming a mental association between the images. After viewing all
timuli pairs, they were given a 2-alternative force choice task (AFC) in
hich a face would be presented above two scenes (or vice versa) and

he subjects had to indicate which of the bottom images had been paired
ith the top image before. The cycle of association-forming and 2-AFC

ask continued until subjects got each association correct two times in a
ow ( Fig. 1A left). 

During the scanning session, subjects completed 3 task conditions
cross 6 functional runs (2 runs for each condition) using a block de-
ign. In the Perceive task condition, subjects were asked to identify the
isual features of each cue on the screen. That is, if a face cue was pre-
ented, subjects were instructed to make a male/female judgment of the
ace via a button box, whereas if a scene cue was shown, subjects were
nstructed to make natural/man-made judgment of the scene. On the
ther hand, during the Retrieve task condition, subjects were asked to
udge the gender or naturalness of the cue-associated image (i.e., the
air mate of the cue from the training phase). For example, if a face
ue was shown, subjects needed to retrieve the specific associated scene
mage (not presented) and make a natural/man-made decision on that
emembered information. Likewise, if a scene cue was shown, subjects
ere supposed to retrieve the specific associated face image and make a
ale/female decision on that remembered information. To minimize the
robability that the neural correlates we later identified were not driven
olely by differences in task difficulty between Perceive and Retrieve task
onditions, we included a Scramble condition. During the Scramble con-
ition, subjects completed the same task as they did in the Perceive con-
ition, but the visual cues were scrambled using a weighted average

https://github.com/rordenlab/spmScripts/blob/master/bmp_scramble.m
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Fig. 1. Task paradigm and analysis flowchart. (A) Behavioral training and in-scanner tasks. Subjects formed mental associations between face and scene images 
outside of the scanner and then made judgments on either perceptual or mnemonic information in the scanner. (B) In-scanner behavioral performance, with the 
orange bar indicating the sample mean and asterisks indicating p < 0.001. (C) Each condition had 16 epochs per subject, with each epoch lasting 40 s. (D) The 
residual activity for each task epoch was computed by regressing out the stimulus-evoked component using a finite impulse response general linear model. (E) 
Whole-brain voxel-wise background FC matrices were computed for each task epoch. These matrices were n -by- n shape, where n is the total number of voxels in the 
brain ( n = 92,745). (F) Background FC matrices of FCMA-selected voxels. FCMA was implemented to select a certain number of voxels whose connectivity patterns 
were most accurate for separating perception and retrieval states based on two-way classifications of epochs from different conditions. The details of the feature 
selection process are shown in Figure S1. In essence, FCMA reduced the whole-brain correlation matrix to a k -by- k correlation matrix for each epoch, where k is 
the number of voxels selected by FCMA. The current study tested multiple values of k , ranging from 100 to 15,000. (G) Model training. Using a cross-validation 
framework, SVM classifiers with precomputed linear kernel were trained to separate all task condition comparisons. (H) Model testing. Trained models were tested 
using the left-out subject for each fold. During the regular cross-validation test, the model was tested on the same task condition comparison as it was trained on. 
During the generalization test, the model was tested on a different task condition comparison than it was trained on. 
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f the original image and its phase-scrambled version. The weight of
his average was established based on a behavioral pilot study using
he same design which sought to vary the weight until accuracy be-
ween the Scramble and Retrieve task conditions was matched ( Fig. 1
ight). Note that although these two conditions were equated in terms
f accuracy, they did differ in terms of reaction time (see Results and
iscussion sections). Each run started with a 6-s blank lead-in period,

ollowed by 8 task epochs and ended with a 6-s lead-out period. Each
poch consisted of a 4-s presentation of instructions, followed by 8 2-s
resentations of single images presented at central fixation separated by
 1-s interstimulus interval. Each sequence of stimuli was followed by
 12-s inter-block-interval. Together, the duration of each trial, epoch,
nd run was 3 s, 40 s and 332 s, respectively. Note that all epochs within
 functional run are of the same condition, and that all visual stimuli of
n epoch are of the same category (i.e., either all faces or all scenes).
he order of the runs was randomized across all subjects and presented

n different orders. The order of the three conditions was randomized
cross the first three runs for each subject and then the same order was
epeated for the last three runs of that subject. 

.4. Image acquisition and preprocessing 

The fMRI data were acquired with a 3T scanner (Siemens Prisma) at
he Princeton Neuroscience Institute. Functional data were acquired us-
ng a T2 ∗ -weighted multiband EPI sequence (repetition time = 1 s, echo
ime = 26 ms, flip angle = 50°, FOV = 260 x 260, resolution = 2.5 x 2.5 x
.5 mm, multiband acceleration factor = 4) with 44 axial slices aligned
o the anterior commissure/posterior commissure. A whole-brain T1-
eighted MPRAGE 3D anatomical volume (1 x 1 x 1 mm voxels) was

ollected to improve registration. One phase and two magnitude field
aps were collected to correct field inhomogeneities. 

The first 6 lead-in volumes of each functional run were manually
iscarded before entering the preprocessing pipeline. Image preprocess-
ng was performed using fMRIPrep 20.1.0rc1 ( Esteban et al., 2019 ). All
unctional images were corrected for slice-acquisition time, head mo-
ion, and susceptibility distortion, and were normalized to a standard
emplate, yielding preprocessed BOLD runs in MNI152NLin2009cAsym
pace. Following use of fMRIPrep, the minimally preprocessed func-
ional runs were further processed using FSL ( Woolrich et al., 2001 )
ith a Nipype implementation ( Gorgolewski et al., 2011 ). All functional

mages were smoothed with a 5.0 mm FWHM Gaussian kernel and high-
ass filtered at 0.01 Hz. For each subject, the intensity values in each
oxel in each of the 6 functional runs were then normalized using the
ean and standard deviation of the resting period. The resting period

or each functional run was defined as the 6 lead-out volumes plus all
2-s inter-block intervals of that run, which were shifted for 4 TRs to
ccount for the hemodynamic delay. This normalization is intended to
emove the BOLD signal differences across runs and thus all 6 runs were
hen concatenated to one time series and used for further modeling. 

.5. Stimulus-Evoked and residual (i.e., background) activity 

We computed residual activity by modeling and then regressing
ut the stimulus-evoked component from the preprocessed data in or-
er mitigate stimulus-evoked coactivation confounds ( Al-Aidroos et al.,
012 ; Cole et al., 2019 ). First, we constructed a confound regression
odel using FSL (implemented in NiPype) in order to minimize the

ffect of the following confound variables (obtained from fMRIPrep):
ix head motion parameters and the mean time series from white mat-
er and cerebrospinal fluid. The resulting timeseries from regressing out
he confound regressors are referred to as the stimulus-evoked activity
imeseries in all subsequent analyses, as they are fully preprocessed, yet
ontain the stimulus-evoked components. Second, we estimated and re-
oved the stimulus-driven components from the stimulus-evoked time-

eries using a finite impulse response (FIR) model, which modeled the
4 
rst 36 TRs for every epoch separately for face and scene epochs, result-
ng in 36 (TR) x 2 (epoch category) x 3 (condition) = 216 regressors.
IR is believed to be the optimal GLM for removing stimulus-evoked
esponse because it does not assume the shape of the hemodynamic re-
ponse function ( Cole et al., 2019 ; Norman-Haignere et al., 2012 ). The
esidual timeseries data are referred to as the residual activity and used
or computing background functional connectivity for all subsequent
nalyses. 

.6. Full correlation matrix analysis on residual activity 

We utilized full correlation matrix analysis (FCMA) as imple-
ented in the Brain Imaging Analysis Kit (BrainIAK; version 0.11;
ttp://brainiak.org) to conduct an unbiased, whole-brain voxel-wise
C analysis that systematically considers all pairwise correlations
n the brain to explore the differences in connectivity configu-
ations between perception and retrieval states. All FCMA jobs
ere executed on Talapas, the HPC cluster at University of Oregon

https://racs.uoregon.edu/talapas). Each FCMA inner loop job was
pread across 4 nodes, with each node supporting 28 threads and a
ob took around 4 h to complete. Each node was equipped with two
ntel E5–2690v4 processors, with 128 GB of memory. FCMA took
n the residual activity and computed a full correlation matrix (i.e.,
hole-brain voxel-wise correlation matrix; 92,745 voxels x 92,745
oxels) for each task epoch. Therefore, for each subject, 8 (epoch) x 2
run) = 16 full correlation matrices were computed per task condition
i.e., Perceive, Retrieve and Scramble ; Fig. 1 c –e ). Using these full correla-
ion matrices, FCMA aimed to ( 𝑖 ) examine whether perception ( Perceive

nd Scramble ) versus retrieval ( Retrieve ) states can be successfully
ecoded from background connectivity patterns, and ( 𝑖𝑖 ) identify the
onnectivity configuration that characterizes each cognitive task state.
otably, the whole-brain correlation matrix is not easily interpretable
y humans given its high dimensionality, and FCMA solves this problem
y identifying of the most important/diagnostic regions of the brain
nvolved in discriminating cognitive states ( Fig. 1F ). Specifically, FCMA
mplements a nested leave-one-subject-out cross-validation (LOOCV)
ramework: the outer loop contains 23 training subjects (23 x 48
pochs/subject = 1104 epochs) and 1 left-out test subject (1 x 48
pochs/subject = 48 epochs) for each outer-loop iteration; and the
nner-loop uses 22 training subjects (22 x 48 epochs/subject = 1056
pochs) and 1 left-out test subject (1 x 48 epochs/subject = 48 epochs)
ithin the outer training set for each inner-loop iteration. Importantly,

he inner-loop intends to select the top k most useful voxels (based
n their connectivity patterns) from the training data (Figure S1) and
he outer loop aims to train classifiers on connectivity patterns of the
elected voxels and test their ability to predict left-out data ( Fig. 1G and
 ). Note that we also performed parcel-level analysis to demonstrate the

ensitivity advantage of our more fine-grained approach. We utilized
he MNI version of the Schaefer parcellation scheme ( https://github.
om/ThomasYeoLab/CBIG/tree/master/stable _ projects/brain _ parcellat 
on/Schaefer2018 _ LocalGlobal/Parcellations/MNI ; Schaefer et al.,
018 ), and performed analyses on parcellations of different granularity
400 and 1000 parcels), which yielded comparable patterns of results
s one another. 

For each iteration of the outer loop, the inner-loop worked with the
raining data from 23 subjects (N-1 subjects) and performed a separate,
ested LOOCV. Specifically, the inner-loop tested the accuracy of using
ach voxel’s seed maps (i.e., how much the voxel is connected to all
ther voxels in the brain) to differentiate perception (i.e., Perceive and
cramble ) from retrieval (i.e., Retrieve ) state (Fig. S1). Each voxel would
et an accuracy score for separating Retrieve and Perceive FC patterns,
nd another score for separating Retrieve and Scramble FC patterns. The
inimum score of the two was assigned to the voxel and all assigned

cores were averaged across the 23 inner-loop LOOCV iterations (i.e.,
raining using 22 subjects and testing on a left out subject). The mini-
um score was used to make sure one of the two comparisons did not

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal/Parcellations/MNI
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rive the overall effect and thus voxel selection prioritized discovery
f regions which were sensitive to both comparisons. For example, a
oxel’s seed map might be able to separate Retrieve from Scramble well
y picking up the visual content information (i.e., scramble vs. intact),
ut not separate Retrieve from Perceive well when the visual content dif-
erence was absent. Computing the minimum accuracy scores allowed
s to measure how well more comprehensively each voxel’s seed map
ncoded cognitive task state differences. 

The resulting scores indicated the ability of each voxel to differen-
iate perception from retrieval states independent of the test data (i.e.,
he left out subject in the outer loop). Based on these scores, masks of
he top k most useful voxels were created from each inner-loop and the
hole-brain full correlation matrices were reduced to k x k correlation
atrices. The current study tested all results with k = 100, 1000, 3000,
000, 7000, 10,000 and 15,000 voxels, and subsequently focused on re-
ults using k = 3000. this was done for two reasons. First, model perfor-
ances dramatically improved as the voxel masks were enlarged from
 = 100 to k = 3000. However, model performance seemed to plateau
hen the top 3000 voxels were selected. Second, our information map-
ing pipeline (See Methods: Information Mapping ) identified a shared
ask that included about 3500 voxels. The results from k = 3000 there-

ore provides the most direct comparison and is the most representative
or subsequent analyses. Using these k x k connectivity matrices, the
CMA outer-loop trained 3 classifiers (one for each pair of task condi-
ions, e.g., Perceive vs. Retrieve ) and tested the model performance using
he left-out testing data. 

.7. Regular cross-validation and generalization tests 

Classifiers built during FCMA were first trained and tested on the
ame task condition comparison (regular cross-validation). To quantify
nd compare model performance for each task comparison, we com-
uted the area under the receiver operating characteristic curve (AUC)
or each classifier. One way ANOVA was used to compare the AUCs for
he three classifiers. The goals of the regular cross-validation tests were
o examine ( 𝑖 ) whether task conditions could be successfully decoded
rom background connectivity patterns and ( 𝑖𝑖 ) whether task condition
omparisons that involve cognitive task state differences (e.g., Retrieve

s. Perceive ) could be decoded with higher accuracies relative to the
omparison that did not involve such differences (e.g., Scramble vs. Per-

eive ). 
During the generalization test, a classifier was trained on one task

ondition comparison (e.g., Perceive vs. Retrieve ) but tested on a differ-
nt comparison (e.g., Perceive vs. Scramble ). The generalization test can
e conducted between each pair of task condition comparisons; we ar-
ue that the bidirectionally averaged generalization AUCs should indi-
ate the classifiers’ sensitivity to a certain dimension of task differences
 Fig. 2D ). For example, both the Retrieve vs. Perceive and Retrieve vs.
cramble comparisons involve cognitive task state differences. As a re-
ult, high bidirectionally averaged AUC scores across classifiers trained
n Retrieve vs. Perceive and tested on Retrieve vs. Scramble and vice versa
ould indicate that the classifiers were indeed trained to pick up on

ognitive task state information. On the other hand, high bidirection-
lly averaged AUC score across Retrieve vs. Perceive and Scramble vs.
erceive comparisons would suggest that the classifiers were trained to
ick up on task difficulty (as reflected by decreased reaction times and
ncreased accuracy in the Perceive condition compared to the others)
ifferences. Likewise, high bidirectionally averaged AUC scores across
cramble vs. Perceive and Scramble vs. Retrieve comparisons would sug-
est that the classifiers were trained to detect scrambled versus intact
isual features. Thus, the averaged bidirectional generalization accu-
acies served to measure the degree to which differences in cognitive
ask states, task accuracies, and visual content drove classifier perfor-
ance. The primary goal of the generalization test, then, was to exam-

ne whether classifiers were able to preferentially detect connectivity
atterns underlying perception versus retrieval task state differences. 
5 
.8. Multivoxel pattern classification analyses 

We trained activity pattern-based classifiers to test 1) whether FCMA
lassifier performances were driven by any coactivation confounds left
n the residual activity and 2) whether simple MVPA and background
C patterns rely on the same type of cognitive processes. The evoked
ctivity for each voxel was calculated as the average across the 24 TRs
hought to capture the peak evoked BOLD response (shifted 4 s to ac-
ount for hemodynamic delay), resulting in a single value for each voxel
er epoch. As such, the number of features used for MVPA classification
as equal to the number of voxels in the brain mask. Per the first goal,
sing the k voxel masks generated by FCMA inner-loop (See section:
ull Correlation Matrix Analysis on Residual Activity ), we trained pattern
lassifiers using residual activity to perform the regular cross-validation
ests (Fig. S2). Per the second goal, with each set of k voxel masks, we
rained pattern classifiers using stimulus-evoked activity to perform the
egular cross-validation test ( Fig. 3B middle). Pattern classification anal-
ses were performed using a support vector classifier (C = 1) imple-
ented in the Scikit-learn module in Python ( Pedregosa et al., 2011 ). 

.9. Information mapping 

Due to the leave-one-out cross-validation scheme, each fold of the
uter-loop produced non-identical sets of top voxels. To obtain a com-
on mask, we combined the FCMA inner-loop with non-parametric per-
utation tests to generate a group-level mask that included the top vox-

ls differentiating perception from retrieval states better than chance.
e obtained this group-level mask in three steps. First, using a LOOCV

cheme across all 24 subjects, we averaged the classification accuracy
omposite score (i.e., the minimum of the accuracy scores for separating
etrieve vs. Perceive and Retrieve vs. Scramble FC patterns) for each voxel
Figure S1) and used this as the “observed ” score for each voxel. Sec-
nd, we shuffled the labels of all three task conditions for each subject
nd repeated the outer-loop training-testing pipeline using the shuffled
abels for 100 iterations. As a result, we generated a null distribution
f the classification accuracy composite scores for each voxel. Using the
ean and standard deviation of the classification accuracy score null
istribution for each voxel, we z-transformed the observed feature selec-
ion score computed above (i.e., the group-averaged composite accuracy
core). We chose a relatively stringent voxel-wise primary threshold ( P
 0.0001) to reduce the likelihood of false positives and to avoid finding

arge voxel clusters that span the brain ( Woo et al., 2014 ). Voxels that
assed the threshold were divided into clusters using 3dClusterize and
he corresponding cluster-extent threshold was computed using 3dClust-
im with AFNI (whole-volume alpha-values: -athr < 0.01). In total, 62
lusters passed the cluster-extent threshold, with size ranging from 620
o 2 voxels. In the last phase of the information mapping, we selected
lusters according to their size and whether they improved model per-
ormance when combined with all larger clusters. Specifically, we began
ith the largest cluster (620 voxels), then we sequentially added vox-

ls from the next largest cluster to our mask and used the FCMA outer
oop to test how well this set of voxels differentiated perception from
etrieval states. In other words, we iteratively ran a set of FCMA outer
oop tests, and measured the change in classification performance as the
ask accumulated each new cluster of voxels (Figure S3A). The ratio-
ale for performing cluster selection is to identify the smallest number
f “sufficient ” nodes whose network dynamics capture the differences
etween perception and retrieval states and ultimately reduce the full
orrelation matrix of the brain to a tractable set of representative ROIs.

.10. Community detection 

We applied community detection algorithms on the clusters identi-
ed by information mapping, aiming to understand the network level
ifferences between perception and retrieval states. Specifically, we av-
raged across all voxels within each cluster to obtain cluster-level time
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eries data for each epoch. Cluster-level background functional con-
ectivity (FC) matrices were then computed for each epoch for every
ubject, and then averaged within each task condition, resulting in one
roup-averaged connectivity matrix for the Perceive, Scramble, and Re-

rieve conditions respectively. Community detection on weighted graphs
i.e., the connectivity matrices calculated above) was performed using
he Louvain algorithm via NetworkX in Python. Following the approach
sed in prior work ( Barnett et al., 2021 ; Ji et al., 2019 ), we ran the algo-
ithm 1000 times on the weighted graphs to tune the resolution parame-
er in order to maximize modularity, which in turn captures how well a
etwork can be subdivided into non-overlapping groups ( Rubinov and
porns, 2011 ). The tuned resolution parameters (gamma) were 1.10,
.13, 1.19, for Perceive, Retrieve and Scramble task conditions, respec-
ively. To visualize intra- and intramodular connectivity, we used the
ruchterman-Reingold force-directed projection implemented in Net-
orkX to project the graphs onto 2D spaces. 

.11. Within- and between-communities connectivity 

To further understand network-level differences within and between
he communities identified using the steps above (DMN, Control, and
SC; see Results), we computed a cluster-wise subject-level FC matrix

or each task condition. We averaged the FC matrices for Perceive and
cramble conditions to create composite matrices that reflect FC dynam-
cs underlying the perception state. To examine the coupling pattern
cross communities, we averaged across the connectivity strength be-
ween clusters (nodes) within the same functional community using both
erception and retrieval state FC matrices. A paired sample t -test was
sed to examine whether DMN 

–Control connectivity strength differed
etween perception and retrieval states; and a two-way repeated mea-
ures ANOVA was then used to examine whether RSC nodes changed
heir coupling pattern with respect to the DMN and Control network
odes. To examine within-community connectivity strength, we aver-
ged the connectivity strength between all nodes within the DMN, Con-
rol, and RSC regions for both perception and retrieval states. Simi-
arly, a two-way repeated measures ANOVA was used to assess whether
 functional community was biased toward a certain cognitive task
tate. All statistical analyses were performed using Pingouin 0.5.1 with
ython3. 

.12. Pattern similarity analyses on stimulus-evoked activity 

The goal of this set of analyses was to identify any potential differ-
nces between the three functional communities in their roles in per-
orming cognitive tasks. We focused on three different cognitive aspects
nd tested the degree to which each functional community was sensi-
ive to ( 𝑖 ) the current visual category (i.e., face vs. scene), ( 𝑖𝑖 ) the current
ehavioral task (i.e., gender vs. naturalness judgement), and/or ( 𝑖𝑖𝑖 ) the
urrent cognitive state (i.e., perception or retrieval). To do that, we per-
ormed pattern similarity analyses using both stimulus-evoked activity
atterns and background connectivity patterns. 

To obtain the stimulus-evoked activity patterns, we extracted the 24
ask TRs for each epoch (after being shifted 4 s to account for hemo-
ynamic delay) from the post-confound regression time-series. These
timulus-evoked estimates were then averaged along the time dimen-
ion and reshaped into a vector for each cluster (length of the vector is
he number of voxels in that cluster). Background connectivity patterns
or each cluster were computed as the correlation over time between
he cluster and the other 15 clusters, reshaped into a 15-dimensional
ector for each ROI ( Fig. 6B ). To compute pattern similarity measures,
he Fisher’s Z transformed correlations between each pair of vectors
rom different functional runs were calculated ( Kriegeskorte et al., 2009 ;
ig. 6A ). Sensitivity was quantified as the difference between within-
tate epoch pattern similarity and between-state epoch pattern simi-
arity. For example, when examining sensitivities for the current task
udgement, pattern similarities were computed among all epochs with
6 
he same judgement (i.e., gender to gender and naturalness to natu-
alness) and compared to those with different judgments (i.e., gender
o naturalness). Sensitivity was calculated by using the average within-
tate pattern similarity score minus the average between-states pattern
imilarity score. Thus, a significantly positive sensitivity index would
uggest that the given ROI produced relatively distinct activity and/or
onnectivity patterns for the two aspects of the task (state, content, or
udgement). We averaged the sensitivity scores across ROIs within the
ame functional communities. A one-way ANOVA was used to compare
ensitivity scores of each cognitive process across the three functional
ommunities. 

. Results 

.1. Behavioral results 

We designed an fMRI task that required subjects to perform judg-
ents on information that was either available in the perceptual envi-

onment (perception) or had to be retrieved from memory (retrieval),
n both cases matched in terms of visual content and task accuracy
 Fig. 1A ). Overall, subjects demonstrated greater accuracy in the Per-

eive compared to Retrieve condition, but comparable accuracy between
cramble and Retrieve conditions ( Fig. 1B ). Specifically, one-way (condi-
ion) repeated measures ANOVAs revealed a main effect of condition for
oth reaction time ( F (2, 46) = 288.8, p < 0.001, 𝜂2 = 0.97) and accuracy
 F (2, 46) = 91.21, p < 0.001, 𝜂2 = 0.90). Although accuracy in the Perceive

ondition was significantly greater than that in the Retrieve condition
 t (23) = 13.4, p < 0.001, 95% CI = [0.16, 0.22], Cohen’s d = 3.55), the
etrieve and Scramble conditions did not significantly differ, serving as
 useful point of comparison ( t (23) = − 1.65, p = 0.11, 95% CI = [ − 0.07,
.01], Cohen’s d = 0.45). The process (see Methods) used to match ac-
uracy across Retrieve and Scramble conditions was not designed to
atch reaction time between Retrieve and Scramble conditions, which

ignificantly differed from one another. Specifically, subjects differed
cross the three conditions in terms of reaction time (F (2,46) = 230.9,
 < 0.001, 𝜂2 = 0.91) and had a significantly slower reaction time in
he Retrieve condition compared to Perceive and Scramble conditions
nd slower reaction times for Scramble compared to Perceive (Retrieve
s. Perceive: t (23) = 18.8, p < 0.001, 95% CI = [0.39, 0.0.49], Cohen’s
 = 3.63; Retrieve vs. Scramble: t (23) = 6.94, p < 0.001, 95% CI = [0.10,
.19], Cohen’s d = 1.11; Scramble vs. Perceive: t (23) = 16.44, p < 0.001,
5% CI = [0.26, 0.33], Cohen’s d = 2.37). 

.2. Perception and retrieval involve distinct background connectivity 

atterns 

We first examined whether perception and retrieval states involve
ifferent “state-related ” whole-brain FC patterns. Using background
onnectivity analysis, voxel-wise whole-brain correlation matrix was
omputed for each epoch ( Fig. 1E ; for details see Methods: Stimulus-

voked and Residual Activity ). We then applied full correlation matrix
nalysis (FCMA) to test whether a trained support vector machine (SVM)
ould successfully separate perception epochs ( Perceive and Scramble )
rom retrieval epochs ( Retrieve ; Fig. 1G and H ). To evaluate binary clas-
ifier performance within the top-performing voxels, we computed the
eceiver operating characteristic (ROC) curves and area under the ROC
urve (AUC) for each classifier per subject, with larger AUC indicating
etter model performance ( Hanley and McNeil, 1982 ). We started by
aving FCMA select k = 100 best performed voxels to train the classi-
er and gradually increased k until classifier performance asymptoted
for details see Methods: Full Correlation Matrix Analysis on Residual Ac-

ivity ). As seen in Fig. 2A , accuracy plateaued when the mask reached
oughly 3000 voxels, and the overall pattern of results across condi-
ions did not dramatically change as a function of the mask size used.
ccordingly, we performed follow-up analyses on the top k = 3000 voxel
asks. These analyses suggested that classifiers trained on background
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Fig. 2. Classification of task conditions based on different features. (A) Perfor- 
mance of background FC classifiers as a function of the number of voxels se- 
lected by FCMA. Area under the receiver operating characteristic curve (AUC) 
was computed for each leave-one-subject-out testing fold to examine the per- 
formance of the binary classifiers. The error bars indicate the standard error 
of the mean AUC across all subjects being tested. The results suggest that the 
top 3000 voxels were able to differentiate task conditions as well as larger sets 
of voxels and so were used for follow-up analyses. (B) Schematic diagram for 
measuring sensitivity to different aspects of cognitive processes using gener- 
alization tests. For example, given that both Retrieve vs. Scramble and Retrieve 

vs. Perceive comparisons involve state-related differences, success in classify- 
ing Retrieve vs. Perceive with the background FC classifier trained on Retrieve 

vs. Scramble (and vice versa) would provide strong evidence that the classifier is 
sensitive to state-related differences. (C) Sensitivity of background FC classifiers 
to three distinctions: cognitive state (i.e., perception vs. retrieval), visual con- 
tent (i.e., scrambled vs. intact), and task difficulty (i.e., low vs. high accuracy). 
Sensitivity was quantified as the average AUC from classifiers trained on one set 
of conditions and tested on another set along the same task-related dimension 
(generalization test). Error bars indicate the standard error of the mean across 
all testing folds. Asterisks indicate p < 0.05. 
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C patterns successfully differentiated epochs of perception from re-
rieval states ( Perceive vs. Retrieve: M AUC = 0.87 ± 0.06, t (23) = 28.62, p
 0.001, 95% CI = [0.84, 0.89], Cohen’s d = 5.84; Retrieve vs. Scram-

le: M AUC = 0.83 ± 0.08; t (23) 19.39, p < 0.001, 95% CI = [0.79, 0.86],
ohen’s d = 3.96; one-sample t -test against chance-level performance
f �̄� = 0.5; see also Figure S2A for results in terms of proportion cor-
ect). Control analyses showed that state-related differences were selec-
ively captured by background FC measures and not by left-over dif-
erences in the stimuli-evoked component of the signal. In particular,
attern analysis using residual activity patterns (i.e., simple MVPA on
esidual timeseries) in the same voxel masks failed to discriminate any
ask condition comparisons (all model performances ≈ 50% correct;
ig. S2B). 

One potential concern with the connectivity results above is that the
bove-chance classification performance was not strictly related to dif-
erences in perception versus retrieval states per se and might reflect the
ontribution of several potential confounding factors. For example, in
ddition to capturing differences in perception and retrieval, the Per-

eive vs. Retrieve comparison also varied in terms of task difficulty (as
easured by accuracy and reaction time) and the Scramble vs . Retrieve

omparison also varied in terms of sensory input (i.e., partially scram-
led vs. intact stimuli). To ensure that the variations in background FC
atterns (among FCMA-selected voxels) were most strongly induced by
7 
tate-related differences, we performed two extra sets of analyses to rule
ut these potential confounds. First, we tested the background FC pat-
ern separability of Perceive vs. Scramble conditions —a task condition
omparison that differed in terms of both task difficulty and visual con-
ent but not in perception/retrieval cognitive states. If the background
C patterns contain mostly state-related information, having equated
erception state for both Perceive and Scramble should worsen classifier
erformance. Consistent with this hypothesis, AUC significantly differed
etween the non-state-related and state-related background FC classi-
ers ( F (2,46) = 20.30, p < 0.001, 𝜂2 = 0.47), with post-hoc tests reveal-

ng that Perceive-Scramble AUC was significantly lower than Retrieve-

erceive ( t (23) = − 5.62, p < 0.001, 95% CI = [ − 0.19, − 0.09], Cohen’s
 = 1.45; Fig. 2A ) and Retrieve-Scramble ( t (23) = − 4.10, p < 0.001,
5% CI = [ − 0.15, − 0.05], Cohen’s d = 0.97). No significant differ-
nce was observed in the comparison of Retrieve-Perceive to Retrieve-

cramble , although there was a trend for higher AUC for Retrieve-Perceive

 t (23) = 1.82, p = 0.08, 95% CI = [ − 0.01, 0.08], Cohen’s d = 0.52). 
In the second set of analyses, we leveraged classification general-

zation to assess the degree to which background FC patterns capture
ifferences within each of three dimensions: (1) cognitive state (i.e.,
erception vs. retrieval); (2) task difficulty; and (3) visual content (for
etails see Methods: Regular Cross-Validation and Generalization Tests ).
his was operationalized as how well a classifier trained on one pair
f conditions generalized to another pair of conditions that differed on
he same putative dimension ( Fig. 1H ). We predicted that generalizabil-
ty as measured by averaged bidirectional AUC should be greatest for
ask condition comparisons that involve state-related differences (i.e.,
erceive vs. Retrieve to/from Scramble vs. Retrieve ; Fig. 2B ) compared to
ask difficulty or visual content. Indeed, we found that background FC
lassifiers differed in their sensitivities to the three dimensions (cogni-
ive task state: 𝑀AUC = 0.78 ± 0.07; task difficulty: 𝑀AUC = 0.68 ±
.07; visual content: 𝑀AUC = 0.53 ± 0.11; F (2,69) = 52.80, p < 0.001,
2 = 0.60, Fig. 2C ). Follow-up t-tests suggested that generalization of
ackground FC classification was highest when state-related differences
ere aligned compared to other dimensions of generalization ( ts > 5.78,
 s < 0.001). Together, these two analyses provide additional support
o the finding above that the pattern of background FC contains infor-
ation about perception and retrieval states above and beyond other
ifferences between conditions. 

.3. Background connectivity and evoked activity patterns capture distinct 

ognitive processes 

Previous research has shown that stimulus-evoked, multi-voxel ac-
ivity patterns reflect ongoing cognitive processes and can be used to
rain classifiers for separating task conditions ( Norman et al., 2006 ).
ow such measures relate to background FC is less well understood. Ac-
ordingly, we investigated whether patterns of stimulus-evoked activity
eflect similar or distinct aspects of perception and retrieval states com-
ared with patterns of background FC. Specifically, we trained MVPA
lassifiers on stimulus-evoked activity patterns for each pair of task con-
itions and compared the performance to classifiers trained using back-
round FC patterns ( Fig. 3 left and middle; for details see Methods: Pat-

ern Similarity Analyses on Stimulus-Evoked Activity ). Stimulus-evoked ac-
ivity patterns led to reliable classification of task conditions ( Retrieve vs.
erceive: M auc = 0.86 ± 0.06; Scramble vs. Perceive: M auc = 0.90 ± 0.12;
cramble vs. Retrieve: M auc = 0.90 ± 0.12; ts > 37.62, p s < 0.001). In-
erestingly, however, activity-based classification results demonstrated
ystematically different pattern compared to those of background FC-
ased classification. Specifically, a two-way repeated measures ANOVA
ith comparisons ( Retrieve vs. Perceive, Scramble vs. Perceive, Scram-

le vs. Retrieve ) and neural measure (stimulus-evoked activity, back-
round FC) revealed a main effect of neural measure ( F (1,23) = 58.60,
 < 0.001, 𝜂2 = 0.72), highlighting the overall impact of using evoked-
esponses for classification. There was also a main effect of comparison
 F (2,46) = 16.19, p < 0.001, 𝜂2 = 0.41). Strikingly, the ANOVA also re-
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Fig. 3. Classification of task conditions based on different neural measures. 
Comparing performance of binary classifiers trained with different neural mea- 
sures: background FC (left), evoked activity (middle), hybrid FC + activity 
(right). Each dot represents a subject. The error bars indicate the standard error 
of the mean AUC across all subjects being tested. 
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1 Note that some of the clusters (right intraparietal sulcus and the inferior 
temporal gyrus) had peak coordinates in the dorsal-attention network (accord- 
ing to Schaefer et al., 2018 ). Given that the remainder of the clusters (5 out of 
7 clusters) fell into the Control Network we use that as the shorthand label. 
ealed differential sensitivity across comparisons as a function of neural
easure ( F (2,46) = 9.70, p < 0.001, 𝜂2 = 0.30). Based on post-hoc t-tests

see Fig. 3 ), this interaction appeared to be driven by relatively greater
lassification performance for comparisons involving cognitive state dif-
erences (i.e., Retrieve vs. Perceive and Scramble vs. Retrieve ) than those
oth involving perceptual decisions (i.e., Scramble vs Perceive ), but only
or background FC as the neural measure. Activity-based classification,
n the other hand did not show a similar relationship. 

The above findings are suggestive that stimulus-evoked activity and
ackground FC may capture distinct aspects of the underlying cognitive
tate. To test this hypothesis more directly, we trained hybrid classifiers
hat combined both stimulus-evoked activity and background FC. The
ecision confidences of the hybrid classifier were computed as the av-
raged decision function outputs from both FC and MVPA classifiers.
he rationale is that the hybrid classifiers should achieve better per-
ormance than either classifier on its own if the two neural measures
apture distinct state-related processes ( Manning et al., 2018 ). In line
ith the above results, a two-way repeated measures ANOVA revealed
 significant main effect of classifier types (i.e., FC vs. MVPA vs. hybrid;
 (2,46) = 68.32, p < 0.001, 𝜂2 = 0.75; Fig. 3 ). Follow-up analyses showed
hat the average AUC of hybrid classifiers was significantly greater than
ackground FC classifiers ( t (23) = 9.95, p < 0.001, 95% CI = [0.11, 0.17],
ohen’s d = 2.58) and evoked-activity MVPA classifiers ( t (23) = 3.06,
 = 0.006, 95% CI = [0.01, 0.04], Cohen’s d = 0.88). Together, these
esults suggest that evoked activity and background FC reflect distinct,
ossibly complementary, neural signatures of cognitive processes, with
he latter displaying more relative sensitivity to state-related differences
cross retrieval and perception. 

.4. Regions and functional communities underlying perception and 

etrieval states 

The results so far suggest that background FC patterns of FCMA
elected voxels capture differences between perception and retrieval
tates. However, the interpretation of these results in terms of brain
egions is complicated by two key issues: 1) the top voxels were not nec-
ssarily identical across cross-validation folds and 2) the number of con-
ections between voxels remains quite large. We sought to address each
f these issues in turn. Per the first issue, because of leave-one-subject-
ut cross-validation, different sets of voxels were selected by FCMA for
ach left-out testing subject/fold. Accordingly, to allow further charac-
erization and interpretation of state-related background FC patterns,
e combined the FCMA inner-loop (Figure S1) with permutation-based

tatistical inference tests to obtain a shared set of voxels across all test-
ng folds (yielding roughly 3500 voxels) whose background FC patterns
8 
aptured state-related differences (for details see Methods: Information

apping ). Per the second issue, even with a shared voxel mask, it may
till be intractable to interpret FC patterns consisting of millions of con-
ections (i.e., ∼ 8 × 10 6 unique connections among 3500 voxels). For
his reason, we further reduced the dimensions of FC patterns using clus-
ering. We first identified spatially contiguous clusters of voxels in the
hared mask using a novel FCMA-then-clustering pipeline (see Methods
nd Fig. S3). This process revealed 16 clusters of interests, whose cluster-
evel background FC patterns provided a parsimonious summary of the
eural sources distinguishing between perception and retrieval states
 Fig. 4A ; Table S1). 

Notably, in addition to its greater interpretability, this FCMA-then-
lustering approach also produced superior classification accuracy to
he use of a priori parcellation-based clusters ( Feilong et al., 2021 ;
chaefer et al., 2018 ). That is, by repeating the analysis pipeline with
redefined brain parcels (instead of fine-grained voxel-wise analysis),
he 16 clusters derived from voxel-level analyses had significantly
reater discrimination performance compared to the best performing 16
redefined parcels in the parcel-level analysis ( F (1,23) = 96.71, p < 0.001,
2 = 0.81; Fig. S3B right). This result held across different parcellation
ranularities (400 and 1000 parcels; Schaefer et al., 2018 ). Moreover,
luster-level background FC patterns retained their preference for state-
elated vs. non-state-related differences (Figure S3; F (2,46) = 24.09, p <
.001, 𝜂2 = 0.23). 

Although the analyses above inform which brain regions might
e most involved in differentiating perception and retrieval cognitive
tates, they do not provide information about how the regions are dif-
erentially connected. Indeed, previous research has suggested that func-
ionally coupled brain regions form large-scale functional communities
 Yeo et al., 2011 ) and that a cluster may be associated with different
unctional communities across different cognitive states ( Braun et al.,
015 ). With this in mind, we next examined the functional commu-
ity structures of the 16 clusters of interest during each task condition
i.e., Perceive, Retrieve , and Scramble ). Specifically, we applied the Lou-
ain community detection algorithm ( Blondel et al., 2008 ) to the group-
veraged background FC matrices for each condition (see Methods: Com-

unity Detection for details). Interestingly, the community structures un-
erlying all three task conditions were consistent in that the 16 clusters
ere consistently partitioned into 3 functional communities ( Fig. 4A ).
he first functional community consisted of regions from the conven-
ional default mode network ( Buckner et al., 2008 ), including the bilat-
ral inferior parietal lobule, precuneus, medial prefrontal cortex, poste-
ior cingulate cortex, and the middle temporal gyrus, which hereafter
e refer to as the DMN. The second functional community consisted
f the bilateral prefrontal cortex, bilateral intraparietal sulcus, superior
rontal gyrus, and temporal gyrus, most of which are part of the fron-
oparietal control network ( Marek and Dosenbach, 2018 ); we refer to
his as the Control network. 1 The last community consisted of bilateral
etrosplenial cortices (RSC; Gilmore et al., 2016 ). 

As an initial step to characterize the contribution of these different
unctional communities, we examined their evoked activation profiles
uring each task condition, using the averaged beta values estimated
y an FIR model (Fig. S4; see Method: Stimulus-Evoked and Residual Ac-

ivity ). Consistent with network-level activity reported in past work, we
ound that DMN clusters deactivated (task-negative) during both per-
eption and retrieval states, whereas Control network clusters activated
task-positive; Kim et al., 2015 ). Interestingly, only the activation profile
f RSC clusters differed between perception and retrieval states: task-
ositive during the retrieval state but task-negative during the two con-
itions in the perception state. 
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Fig. 4. (A) The 16 clusters of interest identified through the 
information mapping pipeline, partitioned into 3 functional 
communities. The color indicates the functional community 
assignment of each cluster. (B) Force-directed graphs gener- 
ated using the Fruchterman-Reingold algorithm implemented 
in NetworkX (V2.7.1; Fruchterman and Reingold, 1991 ). The 
projected physical distance in the graph indicates the degree 
to which nodes are being functionally connected. The color 
indicates the functional community allegiance of each cluster. 
Solid black lines represent manual delineations of the coupling 
pattern of RSC nodes. . 
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.5. Within- and between-community background fc discriminates 

erception from retrieval states 

Our FCMA-then-clustering pipeline successfully identified a tractable
umber of connections among selected brain clusters that robustly dif-
erentiated perception from retrieval states. In the next set of analyses,
e aimed to characterize the nature of the difference in background
C by comparing within- and between-community FC strength across
he two cognitive states. For each subject, we averaged across back-
round FC matrices within each cognitive state (i.e., perception and re-
rieval). FC matrices from Perceive and Scramble conditions were thus
veraged together in order to obtain a single measure of background
C for perception state for each subject. Note that we expected to ob-
erve background FC differences because the clusters were selected be-
ause of their sensitivity to state-related changes; the goal of this analysis
s to interpret this difference. First, we sought to visualize the within-
nd between-community structure using force-directed plots which al-
ow a concise representation of connectivity between all the regions.
s can be seen in Fig. 4B , connectivity between Control and DMN
ommunities appeared to be stable across conditions, RSC was more
losely connected with the Control network during retrieval ( Retrieve

ondition) and with the DMN during perception ( Perceive and Scramble

onditions). 
Next, in order to quantify within-community dynamics, we examined

ackground FC for all cluster pairs within the same functional commu-
ity during perception and retrieval states. Fig. 5A shows the group-
evel differences in cluster-to-cluster background FC strength across the
wo states (perception minus retrieval). Visual inspection revealed that
ost intra-Control network connections (17 out of 21 connections) were

tronger during the perception state, whereas the majority of intra-DMN
onnections (17 out of 21 connections) were stronger during the re-
rieval state. Quantitively, a repeated-measures ANOVA with factors of
ognitive state (perception vs. retrieval state) and functional commu-
ity (DMN, Control network, and RSC) revealed a significant interaction
 F (2, 46) = 19.05, p < 0.001, 𝜂2 = 0.45; Fig. 5B ). This interaction was
riven by the fact that the averaged background FC strength among
SC clusters ( t (23) = 2.94, p = 0.007, 95% CI = [0.02, 0.1], Cohen’s
 = 0.49 ) and cluster pairs within the Control network ( t (23) = 2.26,
 = 0.03, 95% CI = [0.01, 0.06], Cohen’s d = 0.42) was stronger dur-
ng perception compared to retrieval state ( Fig. 5A left), whereas it was
umerically stronger among clusters in DMN during retrieval than per-
eption state ( t (23) = 1.87, p = 0.07, 95% CI = [ − 0.06, 0.01], Cohen’s
 = 0.32; Fig. 5A right). Additionally, the ANOVA revealed a signifi-
9 
ant main effect of functional community ( F (2, 46) = 228.56, p < 0.001,
2 = 0.91). Clusters within the Control network had overall stronger
onnectivity density compared to those within in the DMN ( t (23) = 5.54,
 < 0.001, 95% CI = [0.05, 0.1], Cohen’s d = 0.93). Note that this re-
ult holds even after accounting for the anatomical distances between
lusters (Figure S5). Greater coupling between RSC regions may have
ossibly been driven by the fact that the two RSC clusters were close
o each other anatomically. Lastly, the ANOVA did not show a signifi-
ant main effect of cognitive state ( F (1, 23) = 2.06, p = 0.16, 𝜂2 = 0.08),
uggesting that the overall background FC densities were comparable
cross perception and retrieval. 

Finally, to better understand across network connectivity, we exam-
ned background FC for cluster pairs in different functional communi-
ies across perception and retrieval states. Specifically, as a function of
he two states, we assessed each set of between-network connections
eparately, both in an individual, cluster-wise manner as well as av-
raged across all between-network connections. Based on the relative
tability across conditions of Control/DMN communities compared to
SC seen in Fig. 4B , we will present the results from Control/DMN con-
ectivity and then connectivity with the RSC in turn. First, in terms
f the Control/DMN communities, there were only hints of condition-
ependent connectivity changes ( Fig. 5C ). For example, the right pre-
entral gyrus (rPreCG; Control) tended to couple with DMN clusters
ore strongly during the retrieval state, whereas the superior frontal

yrus (SFG; Control) had stronger coupling with DMN clusters during
he perception state ( Fig. 5D ). However, in aggregate, the averaged
ackground FC strength of cluster pairs in Control network and DMN
ere comparable across the two cognitive states ( t (23) = 1.38, p = 0.18,
5% CI = [ − 0.1, − 0.02], Cohen’s d = 0.39). In contrast, RSC shifted from
oupling with the Control network to DMN, as cognitive states shifted
rom retrieval to perception respectively ( Fig. 5E ). A repeated-measures
NOVA with factors of cognitive state (perception and retrieval) and

unctional community pair (i.e., the averaged connectivity measure be-
ween RSC nodes and regions in either Control or DMN regions) re-
ealed a significant interaction ( F (1, 23) = 100.94, p < 0.0001, 𝜂2 = 0.81;
ig. 5F ). Specifically, RSC nodes had stronger averaged background con-
ectivity with DMN nodes during the perception state ( t (23) = 4.83,
 < 0.001, 95% CI = [0.05, 0.12], Cohen’s d = 0.76), but stronger
ackground connectivity with Control nodes during the retrieval state.
 t (23) = 2.35, p = 0.03, 95% CI = [0.01, 0.09], Cohen’s d = 0.43). The
NOVA did not show a main effect of cognitive state ( F (1, 23) 1.22,
 = 0.28, 𝜂2 = 0.05) or network pair ( F (1, 23) = 0.01, p = 0.91, 𝜂2 

 0.01). 
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Fig. 5. Connectivity configurations during perception and retrieval cognitive states. (A) Group-level differences in background FC strength between each pair of 
clusters (within the same functional community) across perception and retrieval. The color of each cell represents the sign and magnitude of the t values, with a 
positive value indicating stronger coupling during perception state and a negative value indicating stronger coupling during retrieval state. Asterisks indicate p < 0.05 
after FDR correction. Note that we did not depict the background FC matrix for the retrosplenial cortex (RSC) due to the small number of clusters. The background 
FC strength between the two RSC regions is 0.88 during the perception state and 0.82 during the retrieval state. (B) Background FC averaged across all pairwise 
connections within the same functional community across perception and retrieval states. The error bars indicate the standard error of the mean across all subjects. 
Asterisks indicate p < 0.05 (C) Group-level differences in background FC between pairs of clusters in different functional communities (DMN and Control network) 
across perception and retrieval states. The color of each cell represents the sign and magnitude of the t values and asterisks indicate p < 0.05 after FDR correction. 
(D) Background FC patterns of superior frontal gyrus (SFG) and right precentral gyrus (PreCG) during perception and retrieval states. Asterisks imply p < 0.05 after 
FDR correction. (E) Group-level differences in background FC between RSC clusters and DMN/Control clusters across perception and retrieval states. The color of 
each line represents the sign of the t values, with purple indicating stronger coupling during the perception state and green suggesting stronger coupling during 
the retrieval state. Solid lines indicate p < 0.05 after FDR correction. (F) Background FC strength averaged across all pairwise connections between RSC clusters 
and DMN/Control clusters. The error bars indicate the standard error of the mean across all subjects. Asterisks indicate p < 0.05. ITG: inferior temporal gyrus; IPS: 
Intraparietal sulcus; PreCG: precentral gyrus; IFS: inferior frontal sulcus; SFG: superior frontal gyrus; RSC: retrosplenial cortex; mPFC: medial prefrontal cortex; IPL: 
inferior parietal lobule; PCUN: precuneus; MTG: middle temporal gyrus; PCC: posterior cingulate cortex. . 
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.6. Retrosplenial cortex plays unique role across perception and retrieval 

tates 

Although until now we have focused on differences between con-
itions related to cognitive state (i.e., perception vs. retrieval), per-
orming the task required tracking two other forms of information: (1)
he visual category 2 currently being presented (i.e., face vs. scene) and
2 Here we mean “visual category ” to refer to the underlying stimuli used re- 
ardless of how scrambled they were. Although images were slightly scrambled, 
hey still afforded well-off-chance M/F N/M judgements, making them dissim- 
lar to traditional completely “scrambled ” stimuli. Notably, calculating visual- 

o  

s  

c
s

10 
2) the behavioral judgement to perform (i.e., male/female vs. natu-
al/manmade). Here, we performed pattern similarity analyses to as-
ess how strongly these task components were represented in each clus-
er and functional community ( Fig. 6A ). Further, given the divergence
n sensitivity between background FC and evoked activity patterns re-
orted above, we performed these analyses using both neural met-
ics. For each cluster, we calculated pattern similarity between pairs
f epochs ( Fig. 6B ) and compared within-class similarity (e.g., for vi-
ual category: face-face/scene-scene) and between-class similarity (e.g.,
ategory sensitivity using only non-scrambled stimuli does not change the re- 
ults. 
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Fig. 6. Pattern similarity analyses using both background FC patterns and stimulus-evoked activity patterns. (A) Diagram for computing pattern similarity measures 
between pairs of epochs for each of the three task components (cognitive state, visual category, behavioral task). Darker colors indicate epochs of the same class (e.g., 
visual categories being face-face) whereas light colors indicate epochs of different classes (e.g., visual categories being face-scene). (B) Diagram for computing pattern 
similarity measures with both FC and activity patterns. When computing activity pattern similarity measures, each epoch is represented by a n -dimensional vector, 
where n is the total number of voxels in the respective cluster. When computing connectivity pattern similarity, each epoch is represented by a 15-dimensional vector, 
representing the background FC measure between this cluster and the other 15 clusters. (C)–(E) Sensitivity indices of each functional community with regard to each 
of the three task component. Sensitivity indices were quantified as the average difference of within- vs. between-class epoch similarity. Each individual dot indicates 
the average across all subjects for a cluster and the error bars indicate the standard error of the mean across all subjects. Each bar represents the average across 
all subjects for a functional community and the error bars indicate the standard error of the mean across all clusters within the respective functional community. 
Asterisks indicate p < 0.05. . 
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ace-scene) to index the cluster’s sensitivity to a given component. We
hen averaged across clusters within each functional community, yield-
ng 3 sensitivity indices for each functional community per subject. 

Pattern similarity measures of background FC suggested that clusters
n different functional communities had different levels of sensitivity to
ognitive state ( Fig. 6C ; F (2,46) = 6.32, p = 0.003, 𝜂2 = 0.22). In partic-
lar, RSC sensitivity was significantly greater than the Control network
 t (23) = 2.98, p = 0.006, 95% CI = [0.01, 0.05], Cohen’s d = 0.78) and nu-
erically greater than the DMN ( t (23) = 1.95, p = 0.06, 95% CI = [ − 0.01,
.04], Cohen’s d = 0.49). One-way ANOVAs did not reveal significant
ifferences across functional communities in their background FC-based
ensitivity to visual category and behavioral task (ps > 0.43). Although
lusters were initially selected because their background FC patterns
ifferentiated between cognitive states, perhaps leading to biased sen-
itivity estimates, this bias should not necessarily extend to differences
n sensitivity between communities. Next, motivated by the differences
etween BG connectivity and evoked responses found above, we charac-
erized pattern similarity using stimulus-evoked activity as well. Pattern
11 
imilarity of evoked activity indicated that clusters in different func-
ional communities also showed different level of sensitivity to visual
ategory ( Fig. 6D ; F (2,46) = 48.35, p < 0.001, 𝜂2 = 0.68) and behav-
oral judgment ( Fig. 6E ; F (2,46) = 26.92, p < 0.001, 𝜂2 = 0.54). Further,
he evoked activity patterns of RSC were significantly more sensitive to
hese two components than the DMN (visual-category: t (23) = 9.02, p <
.001, 95% CI = [0.12, 0.19], Cohen’s d = 2.26; behavioral-judgment:
 (23) = 5.70, p < 0.001, 95% CI = [0.04, 0.08], Cohen’s d = 1.38) and the
ontrol network (visual-category: t (23) = 4.52, p < 0.001, 95% CI = [0.05,
.13], Cohen’s d = 1.21; behavioral-judgment: t (23) = 5.00, p < 0.001,
5% CI = [0.03, 0.07], Cohen’s d = 1.25). One-way ANOVAs did not
eveal significant differences across functional communities in their
voked activity-based sensitivity to cognitive states (ps > 0.25). Across
etrics, these pattern similarity results highlight how RSC might be in-

olved in many critical aspects of retrieving versus perceiving infor-
ation (cognitive state, the visual content, and the behavioral judg-
ent). However, interestingly, depending on whether the patterns are
efined based on connectivity or activity, RSC can differentially cap-
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ure the cognitive states of retrieval and perception relative to other
egions. 

. Discussion 

The goal of the current study was to characterize and differentiate
erception versus retrieval states in a way that captures the complexity
f whole-brain functional connectivity (FC). First, we found that pat-
erns of background FC across perception versus retrieval states were
ystematically different from one another ( Fig. 2A ). Moreover, the dif-
erences were best captured by background FC patterns between 16 clus-
ers across 3 hypothesized functional communities ( Fig. 4 ; Table S1).
ur whole-brain analysis pipeline allowed us to extend findings from
revious research ( Cooper and Ritchey, 2019 ) by identifying impor-
ant brain clusters and coupling patterns beyond memory-related brain
egions ( Fig. 5 ). Second, our results showed that background FC and
voked activity tend to capture distinct component processes ( Fig. 3 ),
ith the former being more “state-related ” and the latter being more

stimulus-related ” ( Summerfield et al., 2006 ). Third, we demonstrated
he utility of full correlation matrix analysis (FCMA; Kumar et al., 2022 ;

ang et al., 2015 ) and showed how the feature selection process of
CMA, paired with cluster-based dimensionality reduction, can be used
o improve the interpretability of high-dimensional FC results (Figs. S1
nd S3). We conclude by highlighting how the above findings are con-
istent with a framework of selective attention where, given the same
erceptual input, directing attention externally would promote per-
eption of the input-related sensory features, whereas directing atten-
ion internally would promote retrieval of the input-associated episodes
 Chun et al., 2011 ). 

.1. Background functional connectivity configurations underlying 

erception and retrieval states 

The current study had subjects use the same visual input as either
he target of a perceptual judgement or the trigger for episodic mem-
ry. Our results suggest that in order to successfully perform tasks in
hese different conditions the brain produces distinct background FC
onfigurations to maintain a sustained cognitive state for either percep-
ion or retrieval ( Fig. 2A ). It is worth noting that, despite our efforts
o isolate these two states across the three conditions, there are sev-
ral other possible differences between critical conditions. First, because
he image associations were well-learned by the subjects, it is possible
hat incidental memory retrieval could happen during the Perceive and
cramble conditions. Although past univariate work has suggested that
ncidental and directed memory retrieval might engage different neural
rocesses, the brain regions implicated in those processes do not appear
o be at play here. That is, the peak coordinates reported in a represen-
ative study ( Kompus et al., 2011 ) do not fall into any of the 16 clusters
sed here. As such, we believe the background FC results are more likely
o reflect perception/retrieval state-related differences rather than inci-
ental/directed memory retrieval per se. Second, although we sought
o equate task difficulty between the Retrieve and Scramble conditions,
here was still a reaction time difference suggestive of a difference in
ask demands. While the generalization analyses showing higher sensi-
ivity for state differences rather than difficulty differences (as measured
y accuracy and reaction time) suggest that a non-specific difficulty dif-
erence alone does not drive our effect, it is likely that the differences
n reaction time reflect a difference in some other unspecified demand
hat would need to be explored in future work. Despite these points, we
elieve that our results still provide strong evidence for retrieval and
erceptual state-related processing in the brain. 

Similar state-related shifts in background FC configurations have
een reported in previous work. Cooper and Ritchey (2019) found
hat pre-defined regions of interest in memory-related brain systems
anterior temporal and posterior medial networks; Ranganath and
itchey, 2012 ) showed stronger background FC during retrieval over
12 
erception. Using a purely data-driven approach, a subset of our find-
ngs are largely consistent with Cooper and Ritchey (2019) , as we found
hat the retrieval (vs. perception) state is characterized by stronger back-
round coupling between clusters in the default mode network (DMN),
hich is important for internal cognitive processes ( Buckner et al., 2008 ;
eshurun et al., 2021 ). Specifically, our pipeline highlighted seven
lusters in the DMN (blue clusters in Figs. 4A ; 5A and B ), including
he bilateral inferior parietal lobule (IPL), posterior cingulate cortex
PCC), precuneus (PCUN), medial prefrontal cortex (mPFC) and bilat-
ral middle temporal gyrus (MTG). Note that IPL, PCUN, and PCC are
onsidered parts of the posterior medial (PM) network for memory-
uided behaviors ( Ranganath and Ritchey, 2012 ), and IPL, PCC and
PFC have been shown to form a “core recollection network ”, support-

ng memory retrieval success ( Rugg and Vilberg, 2013 ). Indeed, sev-
ral studies have showed that functional interactions between these re-
ions contribute to different aspects of episodic memory ( Cooper and
itchey, 2019 ; Geib et al., 2017 ; King et al., 2015 ). In particular, the

nteraction between the IPL and PCUN may connect episodic features to
orm an integrated neural representation, while conceptual knowledge
nd existing schemas are integrated by PCC and mPFC ( Ranganath and
itchey, 2012 ; Ritchey and Cooper, 2020 ). 

Our findings further extend previous work by showing that the per-
eption (vs. retrieval) state is characterized by increased background
C within a functional community with clusters in both the Control
etwork and the Dorsal Attention network (red clusters in Figs. 4A ,
A and B ). Although there are situations where these networks might
e engaged during memory-related processes ( Hutchinson et al., 2014 ;
osen et al., 2016 , 2018 ), much evidence suggests their consistent in-
olvement in processing the external world. That is, previous research
as consistently implicated these regions as being a part of a larger task-
ositive network that is typically engaged when the brain processes ex-
ernal stimuli ( Fornito et al., 2012 ; Golland et al., 2008 ). Together with
he results concerning the DMN, our findings are consistent with the
dea that the brain has two anatomically separable systems that pri-
arily correspond to “externally oriented ” versus “internally oriented ”
rocessing ( Golland et al., 2008 ). 

Our whole-brain data-driven approach also revealed the importance
f the background FC patterns in retrosplenial cortex (RSC; green clus-
ers in Fig. 4A ) for accurately characterizing perception versus retrieval
tates. Specifically, we showed that RSC-DMN coupling was substan-
ially greater during perception whereas RSC 

–Control coupling was
reater during retrieval ( Fig. 5E and F ). This connectivity pattern may
eem counterintuitive at first, but interestingly it replicates findings of
revious research. RSC is hypothesized to be part of the PM network
 and its background FC patterns were also examined in Cooper and
itchey (2019) . Their results suggested that, although most ROIs in

he PM network showed stronger coupling with each other during re-
rieval compared to perception, the background FC patterns of RSC did
ot demonstrate observable enhancement during retrieval state with
ny other regions in the PM network (c.f., Fig. 3C right in Cooper and
itchey, 2019 ). Instead of showing stronger coupling with PM regions
uring the retrieval state, they found that RSC had numerically stronger
ackground FC with task-positive regions, such as the inferior temporal
ortex, which is consistent with what we observed ( Fig. 5E ). Benefiting
rom the whole-brain data-driven approach, the current study revealed
 more complete picture of RSC background FC during perception and
etrieval states, identifying regions in the DMN and Control networks
eyond classical memory-related systems ( Cooper and Ritchey, 2019 ).
oreover, the RSC clusters identified here also displayed a ‘flip’ in

voked activity across perception and retrieval tasks (see Figure S4),
eplicating past work showing decreased/below-baseline activity dur-
ng encoding and increased/above-baseline activity during retrieval in
edial parietal regions (e.g., Daselaar et al., 2009 ; Huijbers et al., 2012 ,
013 ). A number of conceptual accounts have been offered in terms of
nderstanding this ‘flip’ ( Huijbers et al., 2012 ), however, such accounts
ypically imply that RSC/DMN connectivity would be greater during re-
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rieval, which differs from what we found here (also see Cooper and
itchey, 2019 ). Interestingly, these task-evoked ‘flip’ effects often span
ultiple subregions and/or functional networks ( Huijbers et al., 2012 ,
013 ), and a fruitful direction for future research might be assessing the
eterogeneity of background functional connectivity within the RSC and
urrounding regions. 

Although the findings in RSC are consistent with past obser-
ations, conceptual interpretation of its role here remains specula-
ive. We do note that previous human fMRI and rodent studies sug-
est that RSC is involved in connecting external and internal states
 Bicanski and Burgess, 2018 ; Yeshurun et al., 2021 ). For example, a
tudy in mice found that RSC integrates both allocentric mapping (the
nimal’s location in the external world) and egocentric frame (the an-
mal’s internal representation of the location) to navigate through a
aze ( Alexander and Nitz, 2015 ) by combining sensory inputs and
nemonic information from the medial temporal network ( Bicanski and
urgess, 2018 ). Similarly, human RSC has been proposed to be a hub
or connecting external and internal worlds ( Yeshurun et al., 2021 ), such
hat it integrates external cues with self-generated information to guide
ehavior ( Ranganath and Ritchey, 2012 ). In this respect, background FC
n RSC during perception and retrieval may capture the role of RSC in
ridging perceptual and mnemonic information; however, it is unclear
hy RSC would express higher coupling with the functional community
utatively less involved with the task at hand (e.g., with DMN during
he perception state). Accordingly, we believe an important direction
f future research will be to fully characterize how the RSC assists in
stablishing perception and retrieval states. 

The current results provide information concerning the BOLD corre-
ates of retrieval and perception states which might complement existing
ndings from other modalities. A large number of findings from intracra-
ial and scalp EEG in humans have suggested a link between cognitive
tates and a host of oscillatory dynamics in the brain (for reviews see
ahana, 2006 ; Nyhus and Curran, 2010 ). Although the relationship be-

ween oscillatory dynamics in the cortex and states such as episodic
emory retrieval is multi-faceted ( Hanslmayr et al., 2016 ), a recent

tudy employing a similar task as here found that retrieval and percep-
ual/encoding states could be differentiated based on scalp EEG with a
peculative role of frequencies in the theta range ( Long and Kuhl, 2019 ).
nterestingly, this is consistent with past work showing a link between
spects of theta rhythms occurring before the onset of the stimulus and
ubsequent perception- ( Hanslmayr et al., 2013 ) or retrieval-related pro-
essing ( Addante et al., 2011 ). Future research is required, however, to
ully understand if and how particular oscillatory EEG rhythms might
elate to the background BOLD connectivity and the degree to which key
ubcortical regions implicated in oscillatory dynamics such as the hip-
ocampus and thalamus might additionally influence the specific corti-
al connections observed here. 

.2. Background fc captures “State-Related ” signals and evoked activity 

eflect “Stimulus-Related ” signals 

Different mental states can be reflected in distributed and overlap-
ing patterns of evoked activity in the brain. An influential line of work
as aimed to decode this information using the technique referred to as
ultivariate pattern analysis (MVPA; Norman et al., 2006 ). At the same

ime, another line of complementary work has investigated the inter-
egional connectivity structure of the brain by examining the patterns of
OLD correlations (functional connectivity; FC) between multiple brain
egions ( Smith, 2012 ). Both approaches have been fruitful, resulting in
remendous insights into our understandings of human cognitive pro-
esses ( Haxby James, 2012 ; Song and Rosenberg, 2021 ). Importantly,
ome previous research has suggested that these two neural measures
re likely to capture and reflect distinct, or at least non-overlapping as-
ects of cognitive processes. For example, Song et al. (2021) found that
hen viewing or listening to narratives, ongoing attentional engage-
ent can only be predicted by FC-based models, whereas models trained
13 
ith regional activity patterns failed to capture this information. Addi-
ionally, Manning et al. (2018) showed that an ensemble model that re-
ied on both FC- and activity-based neural measures outperformed mod-
ls that utilized either measure on its own. This result suggests that FC
nd activity patterns can capture partially non-overlapping variance in
ognitive processes. 

Extending these findings, the current study suggests that background
C-based measures are more sensitive to differences in cognitive states
hereas activity-based measures are more likely to reflect differences in

timulus-related features of the task. Specifically, we found that back-
round FC-based classifiers better separated task conditions that in-
olved state-related (i.e., perception vs. retrieval) than those that pri-
arily involved stimulus-related differences (e.g., visual content). On

he contrary, MVPA classifiers did not demonstrate a clear preference
or state-related comparisons over stimulus-related distinctions ( Fig. 3 ).
ur findings are in line with the theory that the fMRI data acquired
t each voxel are composed of both state-related and stimulus-related
ctivity, and that FC-based measures could be better suited to cap-
ure “state-related ” signals whereas activity patterns better capture the
event-related ” component ( Summerfield et al., 2006 ). These findings
re suggestive that background connectivity measures, or similar, might
e informative for investigating complex state-related neural dynamics
eyond perception and retrieval. That is, this form of connectivity ap-
ears to show state-like dynamics in the brain: arising before task on-
et (e.g., preparatory state; Sadaghiani et al., 2015 ), maintained in the
ackground during task performance (e.g., ongoing state; Cohen and
’Esposito, 2016 ), and carried over after the end of a task (e.g., lin-
ering state; Tambini et al., 2017 ). We posit that FC-based measures
hich remove or account for evoked responses, have the potential to

apture these aspects of cognitive states across a wide variety of do-
ains . It is also worth noting that there are different types of FC-based
easures; the current study primarily tested the background FC mea-

ures by regressing out the stimulus-evoked component using a general
inear model ( Al-Aidroos et al., 2012 ; Bejjanki et al., 2017 ; Norman-
aignere et al., 2012 ; Tompary et al., 2018 ). However, some studies
omputed their FC measures without regressing out the stimulus-evoked
omponent (e.g., Song et al., 2021 ) or relying on stimulus-evoked para-
etric measures (e.g., beta series correlation; Bein et al., 2020 ). Future
ork might further examine whether these types of FC-based measures
lso preferentially capture state-related aspects of the cognitive process.

.3. The utility of feature selection in whole-brain voxel-wise fc analyses 

The current study used full correlation matrix analysis (FCMA;
umar et al., 2022 ; Wang et al., 2015 ) to explore whether cognitive
tates are encoded in whole-brain voxel-wise background FC patterns.
ur approach is systematically different from those used in previous

tudies, such as connectome-based predictive modeling ( Shen et al.,
017 ) in two ways. First, FCMA operates on voxel-level connectiv-
ty matrices instead of the commonly-used, lower-dimensional parcel-
veraged time series. Second, FCMA uses a nested leave-one-subject-out
ross validation framework that enables more efficient feature selec-
ion to reduce large connectivity matrix to a tractable size. Here we
iscuss the potential trade-off regarding these two distinctions. First,
ur results suggest that FCMA identified regions that, even after cluster-
ng over contiguous voxels, retained a higher sensitivity for differences
n cognitive states compared to parcel-level analyses (Fig. S3B right).
his finding is consistent with previous research suggesting that voxel-
vertex-level FC patterns are more sensitive to other cognitive measures
concerning intelligence) compared to relatively coarse-grained parcel-
evel analysis ( Feilong et al., 2021 ). The differences in sensitivity could
e due to the fact that many parcellation schemes were defined from
hole-brain resting-state functional connectivity profiles rather than

ask-based connectivity and previous work has suggested that the func-
ional architecture of the brain might change across resting and task
tates ( Cole et al., 2014 ) and may also vary across different task states
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 Krienen et al., 2014 ). It is worth mentioning that the use of predefined
arcellation schemes can significantly improve sensitivity (as measured
y effect size) in other types of analyses (e.g., univariate analyses) com-
ared to voxel-/vertex-level analysis ( Li et al., 2021 ). Thus, future stud-
es need to further investigate the tradeoffs for predefined parcellation
chemes in connectivity analyses. 

The second way the current approach differs from prior approaches
s in terms of interpretability. That is, machine learning models often
ace a trade-off between prediction accuracy and model interpretability
 Feilong et al., 2021 ). In the context of FC-based models, previous work
as primarily focused on constructing a model for making the most accu-
ate predictions on trait-like demographic variation ( Finn et al., 2015 ),
ehavioral performance ( Rosenberg et al., 2016 , 2020 ), or task condi-
ions ( Gonzalez-Castillo et al., 2015 ; Shirer et al., 2012 ). Despite high
rediction accuracies in these models, it is often hard to interpret the
C configuration given the vast number of connections. For example,
osenberg et al. (2016) identified a “high-attention network ”, consisted
f 757 edges across the entire brain, whose pattern of connectivity re-
iably predicted better performance on a sustained attention task. In-
eed, such an approach likely captures many nuances in the neuronal
istributed process of attention and has high predictive accuracy. How-
ver, it is possible that such high accuracy comes at the expense of inter-
retability. That is, constraining the number of edges and nodes in the
escriptive network might sacrifice some degree of prediction accuracy,
ut the resulting FC configuration might be more easily interpreted. The
urrent study attempted to do this by combining a whole-brain voxel-
evel FC model with feature selection using a nested cross-validation
ramework. Specifically, we quantified the “utility ” of each connection
sing the machine learning training and testing framework (See Method:
ull Correlation Matrix Analysis on Residual Activity ; Figure S1). As a re-
ult, we were able to select the most useful connections in an unbiased,
utomated fashion, reducing large correlation matrices to a tractable
ize. Remarkably, the model based on connections among only a set of
6 regions retained comparable AUC scores compared to models based
n connections among 3000 voxels ( Fig. 2a ; 0.83 vs. 0.87) . 3 Thus, the
urrent study demonstrates the value of using the FCMA voxel-to-cluster
ipeline in order to yield the most relevant and interpretable FC config-
ration profile while largely maintaining prediction performance. 

.4. Ideas and speculation: how specialized are retrieval and perception 

tates? 

The nature of this experiment along with the brain regions impli-
ated in our data-driven approach are broadly consistent with the frame-
ork of cognitive control. That is, in terms of experimental demands,

he same type of information from the outside world (images of scenes
r faces) had to be flexibly routed to a limited number of response op-
ions based on the task goals ( Posner and Snyder, 1975 ). Consistent with
ulti-faceted involvement of cognitive control across conditions, our

nalysis identified a series of frontal and parietal regions falling within
he control network ( Miller and Cohen, 2001 ). Per this perspective, ini-
iation and maintenance of retrieval and perception states would be sup-
orted by the ability of prefrontal control regions to represent task goals
nd to dynamically update connectivity of the control network and be-
ond ( Cole et al., 2013 ; Stokes et al., 2017 ). In this perspective, this con-
rol mechanism would enable perceptual- or memory-based processing
imilar to how it might promote a large range of other complex cogni-
ive states, with, e.g., the added involvement of DMN regions here likely
elated to the involvement of memory retrieval. 

What awaits future research is if and how these general properties
f frontoparietal cognitive control dovetail with mechanisms posited
3 Note that there was overlap between the feature selection process and the 
nal testing process (both used all subjects) in the 16 cluster analysis. Thus, the 
erformance of the 16 clusters is slightly biased towards higher performance. 

A  

 

A  

14 
o play a role in external/perceptual versus internal/mnemonic pro-
essing specifically. For example, the retrieval and perception states
ndexed here might be thought of as forms of internal and exter-
al attention respectively ( Chun et al., 2011 ), but the current study
id not explicitly manipulate selection demands during either state,
aking a full comparison to the different forms of attention incom-
lete. Another rich vein of theoretical and empirical work suggests
he hippocampus might play a central role in how the brain switches
etween environmentally-oriented encoding processes and memory-
ased retrieval processes ( Duncan et al., 2014 ; Hasselmo et al., 1996 ;
oney et al., 2017 ; Poskanzer and Aly, 2022 ), but our approach did not
nd its significant involvement. We speculate that this absence might
tem from design-related (use of previously encountered items in the
Perceive’ condition) and/or analysis-related (lack of subject-specific
ubfield data) issues. Nevertheless, a critical step moving forward will
e to understand the bridge between such process-specific mechanisms
nd how such processes are flexibly controlled and maintained in the
ervice of ongoing behavior. 
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