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Neuroscience has an insatiable appetite for data. Many ongo-
ing efforts to extensively sample brain activity1–3 and struc-
ture4–6 are motivated, in part, by the availability of new 

computational methods that make analysis of massive datasets fea-
sible. Equally as important is the growing desire to understand how 
the brain coordinates complex sensory and motor behaviors and 
the realization that the neural networks supporting such behaviors 
span multiple scales, from single neurons to local circuits to whole 
systems. Understanding massive, complex networks will inevitably 
require commensurately massive amounts of data.

The need for massive data is especially acute in visual neurosci-
ence, which is a model system for understanding brain function. 
The network that mediates our ability to flexibly and efficiently 
perceive the visual world occupies approximately one-third of 
human cerebral cortex7 and interconnects brain areas with pro-
foundly different functional properties8. This network both encodes 
visual stimuli and interfaces visual representations into a cognitive 
context, including information about what one has already seen9, 
might see10 or is selectively attending11. Understanding vision 
thus means interrogating a high-dimensional, context-dependent  
neural network.

Given these considerations, it is clear that extensive experimental 
data providing access to whole-brain responses to complex stimuli 
are critical in the quest to understand the human visual system. The 

ideal dataset should include naturalistic stimuli: the visual system is 
distributed widely across the brain, and natural scenes, in addition 
to being ecologically relevant, are effective activators of the entire 
system12. Moreover, the ideal dataset should be large: to take full 
advantage of powerful data analysis and machine learning (ML) 
techniques that have recently become available, we need consider-
ably more data than are currently available. How much? Modern 
ML methods used in computer vision to process natural scenes (for 
example, deep convolutional neural networks (CNNs)) require tens 
to hundreds of thousands of image samples for training13,14. A data-
set that sampled brain activity at these scales would raise the excit-
ing possibility of exploiting these methods to develop better models 
of how the brain processes natural scenes15–20 and would accelerate 
efforts to bridge cognitive neuroscience and artificial intelligence21.

In this paper, we present a dataset that achieves sampling at this 
ambitious scale. The NSD consists of high-resolution (1.8-mm) 
whole-brain 7T functional magnetic resonance imaging (fMRI) 
of eight carefully screened human participants who each viewed 
9,000–10,000 color natural scenes (22,000–30,000 trials) during 
30–40 scan sessions distributed over the course of 1 year. Aggregated 
across participants, NSD includes responses to 70,566 distinct natu-
ral scene images—this is more than an order of magnitude larger 
than similar datasets involving fMRI sampling of many images22–24. 
Moreover, as we show, the high quality of the NSD dataset makes 
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it possible to leverage the full power of modern ML methods for 
developing better models of visual representation. Achieving high 
data quality was afforded, in part, by the use of ultra-high magnetic 
field strength (7T) to improve signal-to-noise ratio (SNR) over what 
is attained at lower field strengths25.

NSD incorporates several innovations in addition to its 
unprecedented scale and quality. To reconcile extensive sampling 
with a practical time commitment, we used an aggressive rapid 
event-related design. This drove the development of new analysis 
techniques that accurately compensate for the overlap of hemo-
dynamic responses across successive trials. To ensure participant 
engagement and control cognitive state, we incorporated a con-
tinuous recognition task26 in which participants were instructed to 
indicate whether they have seen each presented image at any point 
in the past. In addition to making the experiment tolerable (and 
even somewhat interesting) for participants, the inclusion of this 
task makes the NSD, to our knowledge, the longest-term continu-
ous recognition memory fMRI study in history and, thus, a likely 
source of new insights into long-term memory formation and the 
cognitive context of vision. Finally, to ensure the broad reach of the 
NSD dataset, we incorporated design input from a large network of 
collaborators with diverse scientific interests (for example, low-level 
vision, high-level vision, memory, connectivity and neuroanatomy) 
and technical expertise (for example, mapping, multivariate pattern 
analysis, encoding models, representational similarity analysis and 
neural network modeling). This input helped precipitate a carefully 
curated dataset with extensive auxiliary measures.

This paper provides a comprehensive description of the design, 
acquisition and preparation of the NSD dataset. In particular, we 
detail the state-of-the-art acquisition and analysis methods that we 
developed for the dataset and present comprehensive assessments 
that evidence the high quality of the data. We also present initial 
analyses of the NSD dataset, demonstrating the feasibility of using 
data-driven analyses to reveal insights into vision and memory. We 
expect that the NSD will serve as a valuable resource with wide-
spread application in neuroscience and its intersection with artifi-
cial intelligence.

Results
Sampling thousands of images during continuous recognition. 
We obtained 73,000 color natural scenes from the richly annotated 
Microsoft Common Objects in Context (COCO) image dataset14, a 
dataset that is heavily used in the computer vision and ML commu-
nities. Our experimental design specified that each of eight partici-
pants would view 10,000 distinct images, and a special set of 1,000 
images would be shared across participants (eight participants × 
9,000 unique images + 1,000 shared images = 73,000 images). This 
sampling strategy was chosen to maximize the number of distinct 
images in the NSD while also facilitating investigations of simi-
larities and differences in brain representations across individuals27. 
Each image would be presented three times to a given participant. 
Although this is a low number, we reasoned that three trials would 
be sufficient to produce robust responses given our use of ultra-high 
field (7T) fMRI. Furthermore, images would be presented using a 
rapid event-related design consisting of 4-s trials (Fig. 1a). This 
was done to maximize statistical power and to create an engaging 
experience for the participants. In addition, the continuous nature 
of task engagement—in contrast to slow event-related designs and 
block designs where engagement is likely to fluctuate—helps avoid 
unwanted respiratory variations28 and arousal-related confounds29.

The NSD experiment was split across 40 scan sessions for  
each participant (Fig. 1b). To control cognitive state and encour-
age deep processing of the images, participants were instructed 
to perform a continuous recognition task in which they reported 
whether the current image had been presented at any previous 
point in the experiment. We controlled the distributions of image 

presentations such that both short-term and long-term repetitions 
were probed (Extended Data Fig. 1a). Parameters were selected such 
that, even in the first scan session, images were not always new, and,  
even in the last scan session, images were not always old (Extended 
Data Fig. 1b).

Neuroimaging data collection on carefully selected participants. 
All fMRI data in the NSD were collected at 7T using a whole-brain, 
1.8-mm, 1.6-s, gradient-echo, echo-planar imaging (EPI) pulse 
sequence. After verbally screening several potential participants 
with respect to basic eligibility criteria, we recruited 14 individuals 
to participate in an initial 7T fMRI screening session that involved 
population receptive field (pRF)30 and category functional local-
izer (fLoc)31 experiments. Based on data from this scan session, we 
ranked the 14 participants with respect to data quality. Specifically, 
we quantified BOLD variance explained in the pRF and fLoc experi-
ments, behavioral performance in the pRF and fLoc experiments 
and two metrics of head motion, normalized these six measures and 
then averaged the measures (for details, see ‘Rankings from the 7T 
fMRI screening session’ in the Methods). We then invited the top 
eight individuals to participate in the full NSD experiment (all indi-
viduals accepted). This selection process was conducted to ensure 
the best possible data quality for the NSD. Analyses conducted after 
completion of the NSD experiment confirm that the ranking pro-
cedure successfully identified individuals who yield high-quality  
data and that data quality would have suffered substantially had we 
omitted the selection process (Fig. 2c).

Data were collected from the eight NSD participants over the 
course of 1 year (Fig. 1c). Participants consistently engaged with the 
task: the average response rate across scan sessions was above 99% 
for all participants, and the response rate never dropped below 96% 
in any single scan session. Moreover, all participants exhibited suc-
cessful recognition performance (Fig. 1d), issuing ‘old’ responses at 
a higher rate for previously presented images (blue and orange lines) 
than for novel images (yellow lines). The full NSD dataset includes 
a variety of anatomical neuroimaging measures (including T1, T2, 
diffusion, venogram and angiogram), functional neuroimaging 
measures (including the pRF and fLoc experiments, the NSD exper-
iment, resting-state data and two additional experiments involving 
synthetic stimuli and visual imagery) and behavioral measures (Fig. 
2a,b). In some fMRI sessions, physiological data (ten sessions per 
participant) and eye-tracking data (2–4 sessions per participant) 
were also collected. Analysis of the eye-tracking data indicates 
that participants were able to successfully maintain central fixa-
tion most of the time, with some variability in fixation performance 
across participants (Extended Data Fig. 4). Regarding the core NSD 
experiment, we completed the full set of 40 NSD scan sessions for 
four of the participants, but, owing to unforeseen summer absences 
and scheduled decommissioning of the 7T scanner, we completed 
30–32 NSD scan sessions for each of the other participants. A full 
breakdown of data collection and analysis procedures is provided in 
Extended Data Figs. 2 and 3.

Stable high-resolution imaging across scan sessions. In our expe-
rience, although visual inspection is non-quantitative and somewhat 
subjective, it is still the most effective way to assess many common 
aspects of fMRI pre-processing32. Accordingly, we generated a com-
prehensive set of visualizations that detail the excellent quality of the 
raw and pre-processed NSD data. These include detailed inspections 
of raw time series data to confirm the presence of stimulus-evoked 
signals (Supplementary Fig. 3); movies that assess the co-registration 
of the different imaging modalities (for example, T1, T2 and EPI; 
Supplementary Video 1); movies that assess the manually edited 
cortical surface reconstructions generated using FreeSurfer 
(Supplementary Video 2); movies that assess the registration of 
the NSD participants to the fsaverage (Supplementary Video 3)  
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and MNI (Supplementary Video 4) group spaces; movies that 
inspect raw and pre-processed EPI volumes (Supplementary  
Video 5); and movies that provide volume and surface visualizations 
of the stability of mean EPI intensity across sessions (Supplementary 
Videos 6 and 7 and Supplementary Fig. 4) and the stability of 
BOLD responses across sessions (Supplementary Videos 8 and 9). 
All movies are readily viewable online (https://osf.io/zyb3t/). The 
visualizations—in particular, Supplementary Video 9—indicate that 
the quality of the NSD data enable precision functional mapping33: 
activity patterns are fine-scale and highly reliable within individual 
participants, and these patterns are distinct across participants.

In addition to visual inspection, quantitative data quality metrics 
were computed for each NSD scan session. This was in fact done 
on a rolling basis as the data were acquired, allowing us to monitor 
data quality and provide performance bonuses to the participants. 
Inspecting the metrics, we see that temporal signal-to-noise ratio 
(tSNR) is stable across scan sessions for each participant (Fig. 2d, 
left). One participant, participant 8, exhibited low tSNR compared to 
the other participants; this can be attributed to higher levels of head 
motion for this participant (Fig. 2d, middle). We also observe that 
BOLD responses (quantified as median variance explained across 

voxels and runs by a simple ON–OFF general linear model (GLM)) 
are stable across scan sessions for each participant, although there 
is substantial variation in the strength of BOLD responses across 
participants (Fig. 2d, right).

One feature that we implemented in the pre-processing of the 
fMRI data was to interpolate the data on a fine temporal grid and 
a fine spatial grid in the same steps used to correct for slice timing 
differences and spatial displacements (for example, head motion). 
This upsampling strategy preserves fine-scale detail that is pres-
ent in the raw fMRI data due to the temporal jitter of the acquired 
fMRI volumes relative to the experimental paradigm and the spatial 
jitter of the acquired fMRI volumes relative to the anatomy of the 
brain32,34. An illustration of the benefits of upsampling is provided 
in Extended Data Fig. 5. This example highlights the existence of 
fine-scale detail in fMRI image intensities (Extended Data Fig. 5b, 
top row) as well as in BOLD responses extracted from the fMRI data 
(Extended Data Fig. 5b, bottom row, and Extended Data Fig. 5c). 
Notably, this fine-scale detail is replicable across different scan ses-
sions (Extended Data Fig. 5c, bottom, and Extended Data Fig. 5d), 
indicating that the upsampled preparation reveals meaningful detail 
that is lost under a non-upsampled approach.
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Extensive auxiliary measures to complement the NSD data. To 
enrich the fMRI data from the NSD experiment, we collected and 
prepared a large set of auxiliary measures. These measures include 
substantial amounts of resting-state data (minimum 100 min per 
participant), external physiological measures during the resting- 
state scan sessions, diffusion data and associated derivatives (white- 
matter tracts and structural connectivity matrices) and an extensive 
collection of manually defined regions of interest (ROIs), including  
retinotopic and category-selective areas as well as subregions of  
the thalamus and medial temporal lobe. Results and discussion of 
these resources can be found in Supplementary Note 1, Extended 
Data Figs. 6 and 7 and Supplementary Fig. 5.

Accurate estimation of single-trial fMRI response amplitudes. 
We performed a GLM analysis of the data from the NSD experiment  

to help streamline subsequent analyses of the data. The goal of the 
GLM was to obtain single-trial betas—that is, estimates of the fMRI 
response amplitude of each voxel to each trial conducted. Given the 
low SNR of fMRI and the overlap of the hemodynamic response from 
trial to trial, estimating accurate betas is a challenging endeavor. We 
thus developed a novel GLM approach consisting of three com-
ponents. First, we used a library of hemodynamic response func-
tions (HRFs) derived from an initial analysis of the dataset as an 
efficient and well-regularized method for estimating voxel-specific 
HRFs (Fig. 3a–c). Second, we adapted the GLMdenoise tech-
nique35 to the single-trial GLM framework, thereby enabling the 
use of data-driven nuisance regressors (Fig. 3d). Third, to address 
the challenge posed by highly correlated single-trial regressors, 
we developed an efficient implementation of ridge regression36 
and used this to regularize and improve the accuracy of the betas  
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(Fig. 3e). To assess the efficacy of these various GLM techniques, we 
generated three versions of the betas, reflecting increasing sophis-
tication (Extended Data Fig. 8a–c). Beta version 1 (b1) is the result 
of simply using a canonical HRF for all voxels. Beta version 2 (b2) is 
the result of fitting an HRF to each voxel using the library-of-HRFs 
approach. Beta version 3 (b3) uses the library-of-HRFs approach as 
with b2 but also adds the use of GLMdenoise and ridge regression 
in an attempt to improve the accuracy of the betas.

We quantified the quality of the different beta versions (b1, b2 
and b3) by calculating noise ceilings for individual voxels. The 
noise ceiling is a measure of trial-to-trial reliability, quantifying the 
percentage of variance in a voxel’s responses that can be attributed 
to the stimulus and not to measurement noise (Methods). Surface 
maps of noise ceiling results reveal locations of reliable responses 
to the NSD stimuli: high noise ceilings are present in occipital 
cortex and extend into temporal and parietal cortex (Fig. 3f and 
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Supplementary Video 10). Notably, the maps reveal very large 
increases in noise ceilings from b1 to b2 to b3, indicating that the 
additional GLM techniques incorporated into b2 and b3 improve 
reliability of responses. Detailed quantifications show that these 
improvements are highly consistent across voxels and participants 
(Fig. 3g and Supplementary Fig. 6a) and that noise ceiling estimates 
are highly reliable (Supplementary Fig. 6b). For b3, the noise ceiling 
levels in visual cortex are, on average, 36% (calculated by computing 
the median across the nsdgeneral ROI and then averaging across 
participants). This means that a typical visual cortex voxel in the 
NSD dataset has associated with it a set of 10,000 responses (30,000 
trials divided by 3 trials per image = 10,000 images), and a large 
percentage, 36%, of the variance in these 10,000 values is a signal 
that is, in theory, predictable. Expressed in terms of Pearson’s cor-
relation (r), this is equivalent to a prediction accuracy of r = 0.60. 
Complementing the noise ceiling analysis, we also performed sim-
ple univariate analyses of the NSD betas (Extended Data Fig. 8d,e); 
these analyses show that the NSD dataset contains high response 
reliability across trials within a participant as well as high response 
reliability across participants.

A massive increase in equivalent trials. To put the quality of the 
NSD data into perspective, we propose the concept of ‘equivalent 
trials’, which allows comparison of different datasets that vary in 
SNR and trial distribution (see Methods for details). The next largest 
data collection effort that is similar in nature to NSD is BOLD5000 
(ref. 22). Using the same GLM analysis methods on both NSD and 
BOLD5000, we found that the SNR per trial is approximately 0.260 
for the NSD and 0.187 for BOLD5000. Combining these values with 
the number of trials conducted in each dataset, we estimate that the 
total size of the NSD dataset is 213,000 trials × (0.260)2 = 14,399 
equivalent trials, whereas the total size of BOLD5000 is 18,870 trials 
× (0.187)2 = 660 equivalent trials. Thus, using the metric of equiva-
lent trials, the NSD can be viewed as 14,399/660 = ~22 times as large 
as the BOLD5000 dataset. This is a massive increase in statistical 
power. Note that even if we do not take into account the higher SNR 
per trial in the NSD dataset, the NSD still has substantially more 
participants (eight versus four), more trials per participant (26,625 
versus 4,718, on average) and more hours of fMRI per participant 
(35.5 versus 13.7, on average) than BOLD5000.

Successful recovery of retinotopy. Having demonstrated the qual-
ity of the NSD data, we now turn to example analyses that illustrate 
the rich scientific insights that can be derived from the data. As a 
simple starting example, we fit a voxel-wise pRF model that uses 
local contrast in the NSD images to account for the NSD betas. This 
simple model is expected to recover spatial tuning in early visual 
cortex where responses co-vary with stimulus energy37. Indeed, in 
all eight participants, high-quality maps of angle and eccentric-
ity estimates are obtained in early visual cortex, and these esti-
mates extend all the way to the fovea (Extended Data Fig. 9 and 
Supplementary Modeling Note 1). These results provide a check of 
the validity of the NSD betas. They also show that participants were 
able to maintain central fixation reliably enough to support detailed 
mapping of visual space. This finding is consistent with our analysis 
of the eye-tracking data (Extended Data Fig. 4).

Reliable and long-term recognition memory effects. The use of a 
continuous recognition task establishes the NSD as one of the larg-
est datasets relevant to human memory. Despite the challenging 
nature of the task, we found that participants were able to success-
fully discriminate old images from new images (average d' across 
participants: 1.28, maximum: 1.47, minimum: 0.94). Furthermore, 
recognition memory remained above chance even at long time 
scales between repetitions (Fig. 4a). Specifically, for each session, 
we calculated a measure of recognition accuracy accounting for  

guessing (adjusted hit rate: hit rate minus false alarm rate) and 
binned this measure by the time since last exposure (considering 
only those trials involving a previously shown image). At the group 
level, participants exhibited performance levels greater than chance 
(adjusted hit rate > 0) in all measured intervals, ranging from 1 s to 
1 year. At the level of individuals, all participants showed a positive 
adjusted hit rate in the longest time bin for which data are available 
for every participant (when binning on a log scale; seven of eight 
participants when binning on a linear scale). These results indi-
cate that, from its behavioral component alone, NSD is powered to 
address questions concerning human memory spanning short (sec-
onds) to relatively long (months) time scales.

But what about neural effects? To assess whether recognition 
effects are present in the fMRI data, we performed two-sample 
t-tests contrasting NSD betas observed for hits with NSD betas 
observed for correct rejections (the so-called ‘old/new effect’38). 
We found highly consistent old/new effects at the level of indi-
vidual scan sessions (Fig. 4b, top; see also Supplementary  
Fig. 7). Moreover, these effects occur in expected frontal and parietal 
regions39 and persist at the group level (Fig. 4b, bottom). The scale 
and statistical power afforded by the NSD dataset also provide addi-
tional insight. Whereas old/new effects are typically studied using 
group-level analyses, the quality of the NSD dataset reveals highly 
statistically significant results at the level of individual participants. 
Indeed, when pooling trials across all NSD scan sessions, several 
participants exhibited statistically significant activity differentiating 
hits and correct rejections in nearly the entire cerebral cortex (see 
results for a representative participant in Fig. 4b, top). Reminiscent 
of past datasets employing extensive sampling of individuals40, the 
current results suggest that the extent of cortex engaged by basic 
memory processes is much more widespread than previously appre-
ciated, although a careful consideration of effect sizes would be 
important for a full understanding of the effect.

Rich stimulus sampling for probing brain representations. The 
NSD samples a large variety of natural scenes. To gain insight into 
the breadth of stimulus sampling available, we constructed repre-
sentational dissimilarity matrices (RDMs) from the NSD betas and 
performed t-distributed stochastic neighbor embedding41 (t-SNE) 
to visualize the underlying representations. We computed t-SNE 
embeddings in different regions along the ventral visual pathway 
for an example participant (Fig. 5a). These embeddings reflect 
arrangements of stimuli that are driven by the overall similarity 
of multi-voxel activity patterns in the brain, independent of their 
anatomical organization within a given ROI. Visualizing the data 
in this way reveals intriguing patterns of semantic representation 
that are clearly visible by eye. For example, by color-coding the 
resulting embeddings according to animacy attributes (Fig. 5b), we 
found that, in posterior ventral temporal cortex (pVTC), there is a 
clear large-scale pattern progressing from images containing people 
(gray dots, lower left), images containing animals (red dots, middle) 
and images containing inanimate objects (blue dots, upper right), 
whereas the pattern is not present in early visual areas V1, V2 and 
V3. This aspect of semantic representation is consistent with previ-
ous studies42,43.

Other intriguing patterns are also visible. In anterior ventral 
temporal cortex (aVTC), the animacy progression is present to 
some extent, but a different, more clustered representation emerges 
that presumably reflects more complex categorical and semantic 
clusters. Indeed, zooming in on small sections of the t-SNE embed-
ding for aVTC reveals that these clusters contain images with rela-
tively homogeneous semantic content (Fig. 5c): the blue cluster 
is dominated by images of round edible objects, whereas the gray 
cluster is dominated by images of people interacting with objects. 
Note that the clustering of semantically related images does not 
necessarily mean that these representations are truly semantic 
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in the sense of being invariant or independent of visual features; 
the clustering could be driven by certain visual features that are 
diagnostic of object categories44. To tease apart these possibilities, 
additional detailed analyses would be necessary. Overall, these find-
ings show how simple visual inspections of the NSD dataset can 
be used to generate hypotheses about visual representations in the  
human brain.

To further characterize brain representations using a quantita-
tive analysis, we calculated how well brain RDMs are captured 
by a model RDM constructed from category labels in the COCO 
image dataset. Consistent with the clustering observed in the t-SNE 
embeddings, we found that categorical structure is pronounced in 
VTC compared to early visual areas (Fig. 5d). Finally, to assess the 
utility of the NSD for investigating similarities of brain represen-
tations across participants, we isolated images that were common 
across participants and created a second-order RDM that quantifies 
the similarity of brain RDMs across ROIs and participants (Fig. 5e). 
In this second-order RDM, we observed high levels of consistency 
in each ROI’s representation across participants (red outlines). We 
also observed distinct representations across ROIs, with the larg-
est distinctions occurring between early visual areas and VTC. One 
noticeable finding is the existence of strong off-diagonal elements 
(white arrows); these elements indicate spatial noise correlations 
that are typical in fMRI and other neural measurement techniques. 

To counteract these noise correlations, one simple approach is to 
compare representations across ROIs using data from distinct tri-
als45. To further summarize the second-order RDM, we computed 
the average correlation of brain RDMs across all ROI pairs, restrict-
ing this calculation to distinct participants to avoid the effects of 
spatial noise correlations (Fig. 5f). We observe that correlations are 
highest for brain RDMs from the same ROI (for example, a given 
participant’s V1 RDM is more correlated with other participants’ 
V1 RDMs compared to other ROIs), confirming consistencies in 
brain representations across participants (for a complementary  
univariate analysis of across-participant consistency, see Extended 
Data Fig. 8d,e).

A brain-optimized neural network model of the visual system. 
One of the main motivations for the NSD was to amass sufficient 
sampling of brain activity to be able to drive data-hungry ML 
techniques. As an intriguing test case, we specifically investigated 
whether we could successfully use the scale of the NSD to train, from 
scratch, a deep CNN to accurately predict brain activity17. Adopting 
the framework of encoding models46, we took NSD betas from 
visual areas V1–hV4, divided these data into a training set (used 
for parameter tuning) and a validation set (used to assess predic-
tion performance) and evaluated how accurately different compu-
tational models predict brain responses in the validation set based 
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on the presented image. The primary encoding model of interest is 
based on a new network that we refer to as ‘GNet’, a brain-optimized 
CNN whose parameters are trained using image–response pair-
ings observed in the training set. For comparison, we also evalu-
ated an encoding model based on AlexNet47, a task-optimized 
CNN whose parameters are pre-trained using explicit labels of 
objects taken from an image database. AlexNet has been previously 
shown to provide state-of-the-art performance in modeling visual 
responses15,19. Finally, we included a simple V1-like control model 
based on oriented Gabor filters24. Details of modeling procedures 
are provided in Supplementary Modeling Note 2 and Extended  
Data Fig. 10.

Varying the amount of training data provided to the models, we 
found that the performance of the GNet-based encoding model is 
relatively poor when only small amounts of training data are avail-
able (Fig. 6a, orange arrows). This is expected because the feature 
extractors in GNet are not pre-trained and thus require data for tun-
ing. However, when large amounts of training data are available, the 

GNet model exhibits an impressive increase in performance, achiev-
ing approximate parity with the AlexNet-based encoding model 
(Fig. 6a, blue arrows). Interestingly, when we trained a single GNet 
model using brain activity from multiple participants, we found that 
the model was able to outperform the AlexNet model (two-tailed 
paired t-test across participants, P = 0.013), albeit modestly (Fig. 6a, 
red arrows). Noticeably, the simple Gabor model accounts for sub-
stantial variance in the responses; nonetheless, the more complex 
CNN-based models provide additional predictive power, consistent 
with previous observations48. For additional insight into model per-
formance, we compared voxel-wise performance levels of the GNet 
model to noise ceiling estimates (Fig. 6b). Across voxels, prediction 
accuracy is tightly correlated with the noise ceiling, suggesting that 
voxel-wise differences in prediction accuracy simply reflect differ-
ences in SNR. In addition, performance levels are close to, but do 
not reach, the noise ceiling. Finally, cortical surface maps indicate 
that voxel-wise performance levels vary across foveal and peripheral 
representations (Fig. 6c).
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The demonstration that an encoding model based on a 
brain-optimized CNN (GNet) outperforms an encoding model 
based on a task-optimized CNN (AlexNet) is important for two rea-
sons. First, it indicates that the NSD is large enough to successfully 
train a complex neural network architecture. Had the NSD data-
set been smaller in scale or lower in quality, qualitatively different  
patterns of model performance would have been obtained (in  
Fig. 6a, compare orange arrows reflecting a few thousand trials to 
red arrows reflecting tens of thousands of trials). Second, the suc-
cessful training of a brain-optimized CNN opens the possibility of 
new avenues of investigation into the nature of the features used 
in CNNs. It is an interesting open question whether the features 
learned by task-optimized networks like AlexNet are similar to, or 
diverge from, the features present in brain-optimized networks like 
GNet. In general, brain-optimized networks17 are a useful alterna-
tive to task-optimized networks16,20, as the narrowly defined tasks 
that task-optimized networks are typically trained to solve do not 
necessarily respect the diversity of functions supported by the 
human visual system49 nor necessarily match properties found in 
biological visual systems50.

Discussion
In the last several years, several large-scale neuroimaging datasets have 
been made publicly available for re-use (for example, refs. 5,33,51–53).  
Several distinguishing aspects of the present work sets the NSD 
apart from past datasets. One is the unprecedented scale of the data-
set. The NSD shares the motivation of recent ‘deep’ (or ‘precision’) 
neuroimaging efforts33,54–57 that are seeking to amass large amounts 
of data from individual subjects, as opposed to modest amounts of 
data from a large number of subjects. In this context of deep neuro-
imaging, the NSD is, to our knowledge, the most extensive fMRI data 
collection effort that has been performed to date. This can be gauged 
not only in terms of the number of hours of fMRI data acquisition 
per participant (30–40 h of data for each of eight participants on the 
core NSD experiment) and the high spatial resolution of the acquired 
data (1.8 mm) but also the wealth of additional measures beyond 
the core experiment, including substantial amounts of resting-state 
and diffusion data, physiological data and functional localizers. 
The availability of extensive measures provides the opportunity to 
build complete models of how individual brains support vision and 
memory58. Of course, the emphasis on depth in individuals comes 
at the cost of sampling fewer individuals; datasets emphasizing large 
numbers of individuals, such as the Human Connectome Project5, 
are better suited for studying variability in the general popula-
tion and how psychological traits broadly relate to brain structure  
and function.

A second aspect is the unusually high quality of the data. 
Although the quality of neuroimaging data is more complex to 
assess than quantity, assessment of data quality is essential because 
MRI data have relatively low sensitivity and are prone to errors and 
artifacts. In particular, when acquiring massive datasets, there is a 
risk of accumulating unknown sources of noise and artifact. The 
work presented in this paper (and in the accompanying files in the 
data release) guards against this possibility by crafting a customized 
and highly optimized approach to pre-processing the NSD data and 
providing comprehensive documentation of the high data quality 
(see also Supplementary Note 2). Several factors likely contributed 
to the high data quality. These include (1) the use of ultra-high mag-
netic field strength (7T), which enhances BOLD contrast-to-noise 
ratio; (2) the screening, training and incentivization of participants; 
(3) the detailed inspection and supervision of data processing; and 
(4) the large network of collaborators who helped guide the design 
and trajectory of the dataset.

A third aspect of the present work lies in the novel analysis tech-
niques developed for improved GLM analysis of fMRI time series 
data. These include (1) an efficient and robust method to estimate 

voxel-specific HRFs; (2) adaptation of the GLMdenoise tech-
nique35 to a single-trial GLM framework; and (3) development of 
ridge regression as an effective method for regularizing single-trial 
response estimates. These three techniques have been integrated into 
a toolbox that can be applied to other neuroimaging datasets and are 
the subject of a forthcoming paper. An important lesson stemming 
from our results is that well-executed data collection is important 
but not the only factor to consider: data preparation methods exert 
a major influence on the quality of a dataset and, hence, its scientific 
value. One can view improvements in data quality as equivalent to 
increases in data quantity, in the sense that analysis methods that 
reduce unwanted variability (noise) can be interpreted as increasing 
the effective amount of data collected35. Thus, by improving data 
quality, the methods introduced with the NSD are contributing to 
the massive scale of the dataset.

The NSD dataset has many potential applications. Given its 
extensive sampling of natural scenes (70,566 distinct images aggre-
gated across eight participants) and high SNR, the dataset will be 
useful for investigating a variety of phenomena in low-, mid- and 
high-level vision. In addition, the memory component of the NSD 
experiment provides a unique opportunity to study the neural 
mechanisms of both short-term and long-term memory (ranging 
from seconds to many months) as well as potential interactions 
between vision and memory. From a methodological perspective, 
the repeated scanning of individuals using a consistent experimen-
tal manipulation (up to 40 scan sessions of the NSD experiment 
per participant) provides a unique opportunity for development 
and evaluation of neuroimaging pipelines. Finally, perhaps the 
most exciting use of the NSD is as a common dataset to bridge the 
disciplines of cognitive science, neuroscience and artificial intelli-
gence21. As we have shown in the context of deep neural network 
modeling (Fig. 6), there are sufficient data in the NSD to success-
fully drive the training of neural network models with thousands 
of free parameters. This demonstration exemplifies how the NSD—
with its large amounts of carefully curated fMRI data collected dur-
ing a rich cognitive paradigm—enables data-driven approaches 
toward understanding the complexities of information processing  
in the brain.
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Methods
Participant recruitment. The NSD study was advertised to the University of 
Minnesota community. We sought to recruit right-handed individuals (18–65 
years old) with no known cognitive deficits or color blindness and with normal 
or corrected-to-normal vision. Those who were interested in participating were 
contacted for a phone interview to explain the nature of the study and to screen 
them for eligibility. We discussed the long-term nature of the study, the time 
commitment that it would involve and the feasibility of traveling to the scanner 
on a regular basis. We paid attention to the communicativeness of potential 
participants and their general attitude toward study participation. Selecting 
participants whom we were confident would provide high-quality data was more 
important to us than obtaining a random sample of the general population. Based 
on the phone interviews, we invited 14 individuals whom we thought were strong 
candidates to participate in an initial 7T fMRI screening session. Of these, eight 
were selected to participate in the full NSD experiment.

Participants. Eight participants (two males and six females; age range, 19–32 
years) participated in the NSD dataset (subj01–subj08). There were six additional 
participants (four males and two females; age range, 20–53 years) who participated 
in the initial 7T fMRI screening session but not in the remainder of data 
collection. No statistical methods were used to pre-determine the sample size; 
rather, our experimental approach58 emphasizes collecting extensive data from 
each participant, which enables the demonstration and replication of effects in 
individual participants. Participants were naive to the design of the NSD dataset. 
All participants had normal or corrected-to-normal visual acuity. Informed written 
consent was obtained from all participants, and the experimental protocol was 
approved by the University of Minnesota institutional review board. Participants 
were compensated at a rate of $30 per hour, plus performance bonuses. Additional 
participant information, including height, weight, handedness and visual acuity, 
was logged and is available online.

Individuals participated in several neuroimaging and behavioral data collection 
sessions (a full breakdown is provided in Extended Data Fig. 2). Neuroimaging 
included 3T structural scan sessions and 7T functional scan sessions. The 7T 
functional scan sessions included an initial screening session termed ‘prffloc’, 
referring to the pRF and fLoc experiments conducted in that session. The 7T 
sessions also included, for each participant, 30–40 sessions in which the main 
NSD experiment was conducted (‘nsd01–nsd40’). These sessions are collectively 
termed the ‘NSD core’. In some of these sessions, resting-state data were acquired 
before and after the NSD experiment. Finally, the 7T sessions also included two 
sessions conducted after completion of the NSD core; these sessions, termed 
‘nsdsynthetic’ and ‘nsdimagery’, involved measuring responses to synthetic stimuli 
and cognitive task manipulations (including mental imagery), respectively. The 
total number of 7T fMRI scan sessions was 43, 43, 35, 33, 43, 35, 43 and 33 for 
subj01–subj08, respectively. The average number of hours of resting-state fMRI 
conducted for each participant was 2.0 h, and the average number of hours of 
task-based fMRI conducted for each participant was 38.5 h. Each individual also 
participated in several behavioral assessments after scanning was complete. These 
included a variety of behavioral measures (‘nsdpostbehavior’), a final memory test 
(‘nsdmemory’) and an image-similarity assessment (‘nsdmeadows’).

MRI data acquisition. MRI data were collected at the Center for Magnetic 
Resonance Research at the University of Minnesota. Some data were collected 
using a combination of a 3T Siemens Prisma scanner and a standard Siemens 
32-channel RF head coil. Most data were collected using a combination of a 7T 
Siemens Magnetom passively shielded scanner and a single-channel-transmit, 
32-channel-receive RF head coil (Nova Medical). Illustrations of the different types 
of MRI data acquired are provided in Fig. 2b. Below, we summarize the scanning 
protocols (full protocol printouts are available online).

At 3T, we collected several anatomical measures (T1, T2, diffusion and 
angiogram). The motivation for collecting data at 3T was to ensure acquisition  
of T1 volumes with good gray-matter/white-matter contrast and homogeneity, 
which is difficult to achieve at ultra-high field59. To increase contrast-to-noise 
ratio and enable the ability to assess reliability, we acquired several repetitions of 
T1-weighted and T2-weighted volumes. For each participant, we collected between 
six and ten scans of a whole-brain T1-weighted MPRAGE sequence (0.8-mm 
isotropic resolution, TR = 2,400 ms, TE = 2.22 ms, TI = 1,000 ms, flip angle 8°, 
bandwidth 220 Hz per pixel, no partial Fourier, in-plane acceleration factor  
(iPAT) 2, TA = 6.6 min per scan) and 2–3 scans of a whole-brain T2-weighted 
SPACE sequence (0.8-mm isotropic resolution, TR = 3,200 ms, TE = 563 ms, 
bandwidth 744 Hz per pixel, no partial Fourier, iPAT 2, TA = 6.0 min per scan). 
In addition to T1 and T2 data, we also acquired four high-angular-resolution, 
diffusion-weighted spin-echo EPI scans, using protocols from the Lifespan  
Human Connectome Project Development effort60. These protocols involved 
varying the number of diffusion directions and the phase encode direction 
(1.5-mm isotropic resolution, TR = 3,230 ms, TE = 89.20 ms, flip angle 78°, 
refocusing flip angle 160°, bandwidth 1,700 Hz per pixel, echo spacing 0.69 ms, 
partial Fourier 6/8, no iPAT, multi-band slice acceleration factor 4, TA = 5.6 min 
per scan for 99 directions, TA = 5.7 min per scan for 100 directions). The four 
scans included 99 directions AP (anterior-to-posterior phase encode direction),  

99 directions PA (posterior-to-anterior phase encode direction), 100 directions  
AP and 100 directions PA. Diffusion volumes were acquired at b values of 0, 1,500 
or 3,000 s mm−2. We also acquired an angiogram using a time-of-flight multi-slab 
3D sequence (0.39 mm × 0.39 mm × 0.5 mm resolution, TR = 19.0 ms, TE = 2.91 ms,  
flip angle 18°, bandwidth 186 Hz per pixel, phase partial Fourier 6/8, slice partial 
Fourier 6/8, iPAT 2, TA = 5.5 min).

At 7T, we collected functional data and associated fieldmaps and a few 
additional anatomical measures (venogram and high-resolution T2). Functional 
data were collected using gradient-echo EPI at 1.8-mm isotropic resolution with 
whole-brain (including cerebellum) coverage (84 axial slices, slice thickness 
1.8 mm, slice gap 0 mm, field-of-view 216 mm (FE) × 216 mm (PE), phase encode 
direction anterior-to-posterior, matrix size 120 × 120, TR = 1,600 ms, TE = 22.0 ms,  
flip angle 62°, echo spacing 0.66 ms, bandwidth 1,736 Hz per pixel, partial Fourier 
7/8, iPAT 2, multi-band slice acceleration factor 3). The use of moderate spatial 
resolution capitalizes on the SNR benefits provided by ultra-high magnetic field 
strength. At the beginning of each 7T session, we acquired a short test EPI scan  
and adjusted the gain factor (FFT scale factor) accordingly to ensure large  
dynamic range while avoiding clipping. Empirical measurements indicate that the 
acoustic noise caused by the EPI sequence is 112 dBA; assuming a conservative 
noise reduction estimate of 26 dB for the earplugs that we used, the resulting noise 
level is 86 dBA, which can be safely endured for approximately 8–16 continuous 
hours according to guidelines from the National Institute for Occupational  
Safety and Health (1998) and the Occupational Safety and Health  
Administration (2009).

In addition to the EPI scans, the 7T sessions also included dual-echo fieldmaps 
for post hoc correction of EPI spatial distortion (same overall slice slab as the EPI 
data, 2.2 mm × 2.2 mm × 3.6 mm resolution, TR = 510 ms, TE1 = 8.16 ms,  
TE2 = 9.18 ms, flip angle 40°, bandwidth 301 Hz per pixel, partial Fourier 6/8,  
TA = 1.3 min per scan). Fieldmaps were periodically acquired over the course of 
each scan session to track changes in the magnetic field (details provided below). 
In one of the 7T sessions held for each participant, we acquired a venogram 
using a susceptibility-weighted imaging 3D sequence (0.5625 mm × 0.5625 mm × 
0.6 mm resolution, TR = 28 ms, TE = 21 ms, flip angle 17°, bandwidth 120 Hz per 
pixel, phase partial Fourier 6/8, slice partial Fourier 6/8, iPAT 3, TA = 10.1 min). 
This venogram could be useful for investigating the effect of vasculature on fMRI 
signals32. In addition, for the purposes of hippocampal segmentation, we acquired 
in one of the 7T sessions a high-resolution T2-weighted TSE scan (0.357 mm × 
0.357 mm × 1.5 mm resolution, 56 oblique slices oriented perpendicular to the 
long axis of the hippocampus, field-of-view 160 mm (FE) × 156.4 mm (PE), TR 
= 16,000 ms, TE = 53 ms, bandwidth 100 Hz per pixel, no partial Fourier, iPAT 2, 
turbo factor 15, TA = 4.5 min).

In the prffloc 7T fMRI session, the acquisition structure was [F BWLL F BWLL 
F BWLL F], where F indicates a fieldmap, B indicates a multibar run of the pRF 
experiment (188 TRs), W indicates a wedgering run of the pRF experiment (188 
TRs) and L indicates a run of the fLoc experiment (195 TRs). In the NSD 7T fMRI 
sessions, the acquisition structure was either [F NNNN F NNNN F NNNN F] or  
[F RNNNN F NNNN F NNNNR F], where F indicates a fieldmap, N indicates a run 
of the NSD experiment (188 TRs) and R indicates a resting-state run (188 TRs).

Stimulus display and scanner peripherals. Ear plugs were used to reduce acoustic 
noise experienced by the participants. To minimize head motion, we acquired a 
headcase61 for each of the eight NSD participants (Caseforge, http://caseforge.co)  
and deployed the headcases starting from the second NSD core scan session 
(nsd02). To ensure maximal participant comfort, only the posterior half of the 
headcases was used (omitting the anterior half). Standard foam padding was used 
to mitigate head motion before that point (prffloc and nsd01).

Stimuli were presented using a Cambridge Research Systems BOLDscreen  
32 LCD monitor positioned at the head of the 7T scanner bed, placed flush against 
the scanner bore. We chose to use an LCD monitor because it delivers a sharp, 
high-quality image, in contrast to typical scanner setups involving projectors and 
backprojection screens. The monitor operated at a resolution of 1,920 pixels × 
1,080 pixels at 120 Hz. The size of the full monitor image was 69.84 cm (width) × 
39.29 cm (height). Participants viewed the monitor via a mirror mounted on  
the RF coil. The viewing distance was 5 cm from the participants’ eyes to the mirror +  
171.5 cm from the mirror to the monitor image = 176.5 cm total. Measurements of 
the display spectral power density were obtained using a PR-655 spectroradiometer 
(Photo Research). The BOLDscreen is designed by the manufacturer to behave as a 
linear display device, and our measurements confirmed this to be the case.

We determined the maximum square extent visible in both eyes given the 
constraints of the RF coil to be 8.4° × 8.4° (714 pixels × 714 pixels). Thus, stimuli 
from the various experiments (for example, pRF, fLoc and NSD) were adjusted 
to fill 8.4° of visual angle (details provided below). At the beginning of each scan 
session, we made an effort to position the monitor in the same location relative 
to the scanner and to position the participant’s head and RF coil in the same 
location relative to the scanner. We also used a calibration square (8.4° in size) to 
determine any incidental horizontal or vertical offsets needed in that session for 
the participant to see the entire square in each eye, unobstructed. Given these  
efforts, we think that consistent and high-quality visual stimulation was  
achieved across scan sessions. Nonetheless, we caution that, due to limitations in 
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positioning and/or potential drift over the course of a scan session, some slight 
occlusion of the corners of the 8.4° × 8.4° square extent might have occurred  
some of the time.

A Mac Pro computer controlled stimulus presentation using code based on 
Psychophysics Toolbox 3.0.14 (refs.62,63). Behavioral responses were recorded 
using a button box (Current Designs). In some scan sessions (nsd21–nsd30, 
the same sessions in which the primary set of resting-state data were acquired), 
physiological data were collected using a pulse oximeter and a respiratory belt 
(stock Siemens equipment). Care was taken to secure the oximeter with tape to the 
left index finger of the participant and to secure the respiratory belt snugly to the 
participant’s torso. Physiological data were carefully synchronized with the fMRI 
data and cropped but are not further analyzed in this paper.

In several scan sessions (see Extended Data Fig. 2 for details), eye-tracking was 
performed using an EyeLink 1000 system (SR Research) combined with a custom 
infrared illuminator mounted on the RF coil. Eye-tracking was performed for 
the left eye, and eye-tracking data were obtained at 2,000 Hz using the Pupil-CR 
centroid mode. We caution that the eye-tracking data are variable in quality, as 
achieving sufficient pupil contrast was often difficult given the constraints of the 
scanner setup. For information complementary to the eye-tracking data, we also 
captured video recordings of the eye-tracker computer display (Fig. 2b) using a 
cell phone secured to a mount. These video recordings are useful for checking the 
accuracy of the eye-tracker and provide information in scan sessions where pupil 
tracking and data acquisition failed completely. Details of pre-processing and 
analysis of eye-tracking data are provided in Supplementary Note 3.

Day-to-day acquisition procedures. Participants were scanned approximately 
once a week, with attempts to keep a regular weekly scan time. At the beginning 
of each session (starting at approximately nsd07), participants were asked to rate 
on a five-point scale how well they slept the night before, their mood, how hungry 
they were and their stress level. We also asked whether they had had caffeine in 
the past 3 h. At the end of each scan session, participants were asked to rate how 
comfortable they were during the session and to provide any general feedback they 
had about the session. These various measures, as well as any technical issues that 
arose during the session, were logged onto a spreadsheet (available online).

In the first several scan sessions, we emphasized the importance of fixation and 
performed simple tests before scanning in which we watched the participant’s eyes 
while they attempted to fixate and while they deliberately broke fixation. This was 
done to help participants understand what good fixation feels like. In every scan 
session, we reminded participants about the importance of fixation and about the 
correct mapping between buttons and responses.

During data collection, we monitored aspects of data quality, including 
overall image quality, head motion, quality of physiological data and behavioral 
performance. Between functional runs, we checked in with the participant to assess 
their energy level, enthusiasm and compliance. If we noticed any substantial drops 
in response rate, we politely notified the participant and offered short breaks  
before continuing.

To promote participant engagement and retention, participants were given 
the opportunity to earn monetary bonuses that gradually increased in size over 
the course of the NSD study. These bonuses were contingent on achieving certain 
performance levels on data quality metrics, such as head motion and response 
rate (details available online). Information regarding performance was supplied to 
participants in the form of a continually updated ‘leaderboard’ figure. We found 
that this figure greatly helped to motivate participants.

The NSD experiment. Basic design. In the NSD experiment, participants 
performed a long-term continuous recognition task while viewing a large number 
of color natural scenes. We chose this recognition task because it engages and 
challenges the observer and is unbiased with respect to the specific content of the 
images (unlike other tasks such as animacy judgment). In addition, it infuses the 
experiment with a rich memory dimension that is likely of interest to memory 
researchers. In total, 73,000 distinct images were prepared. We intended that the 
eight NSD participants would each view 10,000 distinct images presented three 
times each over the course of 40 scan sessions. We designated a special set of 1,000 
images (chosen randomly from the full set of prepared images) as shared images 
that would be seen by all participants (referred to as the ‘shared1000’); all other 
images would be mutually exclusive across participants. The distribution of the 
three presentations of each image was tightly controlled, and participants were 
naive to both the number and distribution of the presentations. Note that, because 
some NSD participants completed only 30 of the 40 prescribed scan sessions, there 
are ultimately 515 images, out of the shared 1,000 images, that were viewed all 
three times by all eight participants (referred to as the ‘shared515’).

Images were presented using a 3-s ON/1-s OFF trial structure (Fig. 1a). In 
informal piloting, we found that this pacing made the recognition task feasible 
and not overly taxing. In addition, we reasoned that the relatively long stimulus 
duration would increase neural activity and that the rapidity of the design would 
allow more trials to be collected and, thereby, increase overall experimental power. 
Finally, we speculated that the 3/1 trial structure would yield a pleasant experience 
for participants, at least compared to slow event-related designs where most 
experimental time is spent viewing a blank screen.

Image preparation. The NSD stimuli are prepared as a single brick of RGB images 
with dimensionality 425 pixels × 425 pixels × 3 RGB channels × 73,000 images and 
unsigned 8-bit integer format.

Images were taken from Microsoft’s COCO image database14. COCO images 
are photographs collected from online repositories; each image is supplemented by 
a rich set of annotations (for example, boundary polygons around objects, natural 
language captions and body pose estimates). Of the 90 original COCO categories, 
a total of 80 COCO categories exist in the 73,000 NSD images. We used COCO 
images in the 2017 train/val split14 and restricted selection to the subset of images 
for which pixel-level annotations of ‘stuff ’64 (for example, sky, land, wall and road) 
in addition to ‘things’ (for example, car, skateboard and hat) were available.

We selected only images whose smaller dimension (height or width) was at 
least 425 pixels. Where necessary, we squared image dimensions by cropping 
out pixels along the largest dimension. For example, if the original image was 
425 × 585, we cropped away 160 pixels from the larger dimension, resulting in an 
image that is 425 × 425. The median number of pixels cropped per image was 160. 
After cropping, images were downsampled, if needed, to 425 × 425.

Cropping an image can change the way the viewer interprets it. We refer to this 
effect of cropping as ‘semantic loss’. To be able to take full advantage of the rich 
annotations available for the COCO images, we attempted to minimize semantic 
loss when cropping images. For landscape-oriented images, we selected among a 
center, left or right crop. For portrait-oriented images, we selected among a center, 
top or bottom crop (finer grids of cropping options had little effect on results). 
Selection of crops was carefully performed based on quantitative analysis and 
visual inspection (details provided in the NSD Data Manual).

In addition to screening to minimize semantic loss, we implemented a 
screening procedure to remove duplicate images. Some of the COCO images are 
extremely similar to each other, differing only by a post-processing operation (that 
is, grayscaling or sharpening) or by a few frames in a motion-capture sequence. 
To remove these near-duplicates, we downsampled all images to 40 × 40 and then 
computed the correlation of grayscale pixel intensities between all image pairs. 
We manually inspected the image pairs with the 500 highest correlation values. 
Of these, 38 image pairs were observed to be near-duplicates. We randomly 
selected another image from the COCO dataset to replace one image in each 
near-duplicate pair. Finally, we screened captions for all images for indications of 
violent or salacious content. No images were deemed too offensive to include in the 
experiment.

The distribution of ‘thing’ categories across the final images selected for the 
NSD was nearly identical to distribution in the full COCO dataset. As a result, 
the ‘person’ category was over-represented; however, with a few exceptions, all 80 
COCO object categories were displayed in at least 100 images to each participant. 
Note that images tend to depict more than one category, so that a given object 
category frequently appeared in the same image with other categories. For each 
participant’s images, at least 90% of the images contained two or more of the 80 
COCO categories.

Distribution of image presentations. We determined the ordering of the 10,000 
images × 3 trials = 30,000 trials in advance and kept the ordering fixed across 
participants. The idea is that these 10,000 images are actually treated as slots into 
which different NSD images are inserted. We designated the first 1,000 slots as 
corresponding to the special shared1000 images; the remaining 9,000 slots were 
filled with unique images for each participant. Note that because the trial ordering 
and repetition structure are identical across participants, the difficulty of the 
recognition task is similar across participants (up to the fact that some images 
might be more difficult to remember than others).

We controlled the distribution of image presentations to prevent the 
recognition task from becoming too difficult (and risking loss of participant 
morale). In the procedure, we conceptualized the task of determining the trial 
ordering as equivalent to placing image presentations on a circle that would 
eventually be cut and unraveled. The rationale for this circular design is to 
minimize the extent to which certain points in the experiment differ from others; 
of course, because the circle eventually becomes a line, there is some imperfection 
(see discussion below regarding ‘burn-in’ and ‘dead’ time). To determine 
presentation times, we created a circular probability distribution by mixing a von 
Mises distribution and a uniform distribution (Extended Data Fig. 1a). Using 
random draws from the resulting distribution (positioning the distribution at a 
random location on the circle for each image), we determined three presentation 
times for each of the 10,000 images. After completing the placement of all 
30,000 trials, we then cut the circle, unraveled it into a linear sequence of 
image presentations and divided this sequence into 40 consecutive segments 
corresponding to the 40 NSD scan sessions (750 trials per session).

To determine presentation times, we created a circular probability distribution 
by mixing a von Mises distribution and a uniform distribution (Extended Data 
Fig. 1a). For each image, we positioned the peak of the von Mises distribution at a 
random position on the circle (that is, we randomly sampled the mean parameter 
from −180° to 180°) and then randomly sampled presentation times for each 
of the three image repetitions from the mixture distribution. We chose specific 
parameters for the probability distribution: we used a von Mises distribution with 
a concentration parameter of 729 and a mixing ratio of 60% and 40% for the von 
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Mises and uniform distributions, respectively. This choice of parameters yields 
appealing properties. First, the distribution is relatively narrow (Extended Data 
Fig. 1a) and, therefore, ensures that there will be many trials involving an image 
that has been presented in the recent past (thus making the trials easy) while still 
allowing the probing of more distant memory events. Second, there is minimal 
‘burn-in’ time at the beginning of the experiment: even in the first scan session, 
there is still a substantial number of trials involving old images (Extended Data 
Fig. 1b, blue line). Third, there is minimal ‘dead’ time at the end of the experiment: 
even in the last scan session, there is still a substantial number of trials involving 
new images (Extended Data Fig. 1b, blue line).

To provide a sense of the overall experimental design, we computed basic 
statistics on each NSD scan session. For a typical session, the total number of 
distinct images shown once, twice and all three times within that session is 437, 
106 and 34, respectively (these numbers reflect the mean across scan sessions, 
rounding to the nearest integer).

Trial and run design. Each trial lasted 4 s and consisted of the presentation of an 
image for 3 s, followed by a 1-s gap. In total, 75 trials were conducted in a run; 
thus, each run lasted 300 s. The first three trials (12 s) and the last four trials (16 s) 
were blank trials. The remaining 68 trials were divided into 63 stimulus trials and 
five blank trials. The blank trials were randomly positioned in each run such that 
the minimum and maximum continuous number of stimulus trials was nine trials 
(36 s) and 14 trials (56 s), respectively (Fig. 1b). For even-numbered runs, the 
63rd stimulus trial was designated to be a blank trial. In total, 12 NSD runs were 
collected in one NSD session, yielding a total of (63 + 62) × 6 = 750 stimulus trials. 
Moreover, this design was repeated for all 40 NSD sessions: 750 stimulus trials × 
40 sessions = 30,000 stimulus trials. The temporal ordering of stimulus and blank 
trials was generated once and kept fixed across participants.

Note that the experimental design involves minimal trial jittering: for the 
most part, the time interval separating consecutive stimulus images is fixed at 
1 s, although occasionally, due to blank trials, the time interval is 5 s. This design 
was intended to maximize statistical power and differs from conventional fMRI 
practice where intervals are often chosen randomly from a fixed range.

Stimulus presentation and task. Because the BOLDscreen is calibrated to behave as 
a linear display device, we used a squaring luminance response when presenting 
the NSD experiment to simulate the typical viewing of digital images. At the time 
of presentation, the prepared NSD images were resized using linear interpolation 
from their native resolution of 425 pixels × 425 pixels to 714 pixels × 714 pixels to 
occupy 8.4° × 8.4° on the display. Throughout each run (including blank trials), 
a small semi-transparent red fixation dot with a black border (0.2° × 0.2°, 50% 
opacity) was present at the center of the stimuli (Fig. 1a). Stimuli were shown 
against a gray background with an RGB value of 127, 127 and 127.

Participants were instructed to fixate the central dot and to press button 1 using 
the index finger of their right hand if the presented image was new—that is, if the 
image had never been presented before—or button 2 using the middle finger of 
their right hand if the presented image was old—that is, the image was identical 
to one that had been presented before, either in the current scan session or any 
previous scan session. Participants were additionally instructed to continue to 
fixate and wait for the next image in the event of blank trials.

Before the start of the NSD experiment, we showed the participants a version 
of the experiment involving cartoon images, for them to become familiarized with 
the feel and timing of the task. During the NSD experiment, minimal feedback 
was provided to the participants regarding their performance on the recognition 
task. Participants were blinded to the precise details of the NSD experiment (for 
example, total number of images and total number of presentations per image). 
Participants were informed only about their response rate (fraction of trials on 
which they successfully made a response) and a vague ‘performance metric’, which, 
unbeknownst to them, quantified their percent correct for easy trials (trials that 
involved the presentation of an image that had occurred earlier in the same scan 
session). We revealed the nature of the design in a debriefing session after the 
completion of the NSD experiment (details below).

Details on experiment timing. Stimulus presentation was locked to the refresh rate 
of the BOLDscreen monitor. Empirical measurements confirmed that the monitor 
refresh rate was nearly exactly 120 Hz: duration of runs was highly reliable, ranging 
from 299.95 s to 299.98 s. To compensate for the slight offset from 300 s, the fMRI 
data were pre-processed to achieve a sampling rate of 0.999878 s (high-resolution 
preparation) or 0.999878 s × (4/3) = 1.333171 s (standard-resolution preparation). 
For brevity, we refer to these numbers as 1.000 s and 1.333 s. Experimental runs 
were started by a trigger issued by the MR scanner. Due to input polling and 
monitor refresh, there was slight variability in the delay between trigger detection 
and the presentation of the first stimulus frame, ranging from 3 ms to 22 ms. We 
did not attempt to compensate for this delay.

Acquisition. Due to constraints on participant availability (including unplanned 
out-of-town absences in the summer of 2019) and due to constraints on scanner 
availability (the 7T scanner was decommissioned in November 2019), we did not 
complete the full NSD experiment for every participant. Fortunately, we were able 

to collect a sizable amount of data: 40, 40, 32, 30, 40, 32, 40 and 30 NSD sessions 
for subj01–subj08, respectively. In these collected data, each participant viewed 
9,209–10,000 distinct images and participated in 22,500–30,000 trials. Aggregated 
across participants, the total number of distinct images shown was 70,566, and the 
total number of trials was 213,000.

Debriefing. After completion of the final memory test (details below), participants 
filled out a post-NSD questionnaire. This questionnaire probed topics such 
as strategies used for performing the NSD task and estimates for the number 
of images viewed and the number of image repetitions. After filling out this 
questionnaire, the design of the NSD experiment was then revealed to the 
participants.

Other experiments. pRF experiment. We adapted the experiment used in the 
Human Connectome Project 7T Retinotopy Dataset30. Stimuli consisted of slowly 
moving apertures filled with a dynamic colorful texture (Fig. 2a). Apertures and 
textures were updated at a rate of 15 Hz. Two run types were used. The first, termed 
‘multibar’, involves bars sweeping in multiple directions (same as RETBAR in 
the Human Connectome Project 7T Retinotopy Dataset). The second, termed 
‘wedgering’, involves a combination of rotating wedges and expanding and 
contracting rings. Both run types included blank periods.

For consistency with the NSD experiment, stimuli were resized to fill a circular 
region with diameter 8.4°. Each run lasted 300 s (exact empirical timings were 
highly accurate and ranged between 299.95 s and 300.00 s). Throughout stimulus 
presentation, a small semi-transparent dot (0.2° × 0.2°) was present at the center of 
the stimuli. The color of the central dot switched randomly to one of three colors 
(black, white or red) every 1–5 s. Participants were instructed to maintain fixation 
on the dot and to press a button whenever the color of the dot changed. To further 
aid fixation, a semi-transparent fixation grid was superimposed on the stimuli and 
was present throughout the experiment65. A total of six runs (three multibar and 
three wedgering) were collected in the first 7T fMRI session (prffloc).

fLoc experiment. This experiment was developed by the Grill-Spector laboratory31 
(stimuli and presentation code available at http://vpnl.stanford.edu/fLoc/). The 
experiment consisted of the presentation of grayscale images depicting different 
stimulus categories (Fig. 2a). There were ten categories, grouped into five stimulus 
domains: characters (word and number), bodies (body and limb), faces (adult 
and child), places (corridor and house) and objects (car and instrument). Stimuli 
were presented on a scrambled background (different backgrounds for different 
stimuli). Stimuli were presented in 4-s trials. In a trial, eight images from a given 
category were sequentially presented (image duration, 0.5 s). Each run included 
six presentations of each of the ten categories as well as blank trials (also of 4-s 
duration).

For consistency with the NSD experiment, stimuli were resized to fill a square 
region filling 8.4° × 8.4° of visual extent. Each run lasted 300 s (exact empirical 
timings were highly accurate and ranged between 300.000 s and 300.002 s). 
Throughout stimulus presentation, a small red fixation dot was present at the 
center of the stimuli. Participants were instructed to maintain fixation on the 
dot and to press a button whenever they noticed an image in which only the 
background was present (‘oddball’ task). In total, six runs were collected in the first 
7T fMRI session (prffloc).

Resting-state experiment. Stimuli consisted of a white fixation cross (0.5° × 0.5°) 
on a gray background (Fig. 2a). Each resting-state run lasted 300 s. In the second 
resting-state run held within a given scan session, the fixation cross turned red 
after 12 s had elapsed and remained red for 4 s before returning to white.

Resting-state data were acquired in several NSD core scan sessions: nsd21–
nsd38 for subj01 and subj05 and nsd21–nsd30 for all other participants. Thus, a 
total of 100 min or 180 min of resting-state data were acquired for each participant. 
In each session, one resting-state run was acquired at the beginning of the session 
(before the NSD runs), and another resting-state run was acquired at the end of the 
session (after the NSD runs).

In the first resting-state run, participants were instructed to stay awake and 
fixate the cross but otherwise rest. In the second resting-state run, participants 
were additionally instructed to inhale deeply when the fixation cross turned 
red. This instructed breath was designed to aid analysis of the physiological data 
collected concomitantly with the resting-state data. Before each resting-state run, 
participants were asked to report their current sleepiness level using the Stanford 
Sleepiness Scale66 (1–7, where 1 is most active and 7 is most sleepy). After each 
resting-state run, participants were asked to report their sleepiness level during the 
run that had just completed.

After the last scan session involving resting-state data, participants filled out a 
post-resting-state questionnaire. This questionnaire queried what the participants 
were doing during the resting-state runs and whether they thought about the 
images from the NSD experiment.

Synthetic stimuli experiment (nsdsynthetic). After completion of the NSD 
experiment, we conducted an additional 7T fMRI scan session in which  
responses were measured to a variety of carefully controlled synthetic 
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(non-naturalistic) stimuli while the participant performed either a fixation  
task or a one-back task. These data will be described and released in a  
forthcoming manuscript.

Visual imagery experiment (nsdimagery). After completion of the nsdsynthetic 
experiment, we conducted an additional 7T fMRI scan session in which responses 
were measured while participants engaged in visual imagery and other cognitive 
tasks. These data will be described and released in a forthcoming manuscript.

Additional behavioral measures (nsdpostbehavior, nsdmemory and nsdmeadows). 
Several behavioral assessments were conducted after completion of the NSD 
experiment. Some of these were relatively brief and included the following 
(nsdpostbehavior): open-ended questions regarding language ability; the Vividness 
of Visual Imagery Questionnaire67; the Test of Word Reading Efficiency68, including 
both Sight Word Efficiency and Phonemic Decoding Efficiency; the Cambridge 
Memory Test for Faces69; ultra-fast measurement of contrast sensitivity70; and an 
assessment of chromatic sensitivity (participants adjusted intensities of red, green 
and blue channels on the BOLDscreen display until minimal luminance flicker  
was perceived).

We also conducted a final memory test in which we collected various 
memory-related measures regarding the images shown to the participants during 
the NSD experiment (nsdmemory). These data will be described and released in a 
forthcoming manuscript.

Finally, using the web-based Meadows platform (http://meadows-research.
com), we conducted an assessment of how the NSD participants perceive 
and interpret the NSD images (nsdmeadows). First, we selected a small set of 
images that maximally span semantic space. This was done by isolating the 
shared515 images; computing shifted inverse frequency sentence embeddings 
for the sentence captions provided by the COCO dataset71; and using a greedy 
approach to determine the subset of 100 images that maximize the average 
distance between each image’s embedding and its closest neighbor. We then 
asked participants to perform a Multiple Arrangements Task72 in which they 
arrange using a drag-and-drop interface the 100 images within a white circular 
arena according to the similarity of their content. Using an adaptive procedure, 
subsequent arrangements were conducted using subsets of the images to maximize 
information gain. This was done until 45 min had elapsed. Using a similar interface 
on Meadows, participants then provided valence and arousal ratings for the 100 
images as well as three additional images pulled from the shared515 images. 
Ratings were performed separately for valence and arousal and were accomplished 
by freely arranging, using a drag-and-drop interface, the images (delivered in small 
batches) along a one-dimensional axis ranging from low to high. This assessment 
took about 15 min.

Overview of data analysis. We designed custom analysis strategies to maximize 
the quality of derived measures from the NSD data. Several methods are based on 
recent work32,73 where further details can be found. Data analysis and visualization 
were performed using custom code in MATLAB and Python as well as tools from 
various packages, such as FreeSurfer, SPM, FSL, ANTs74 and ITK-SNAP75. An 
archive of code used is provided online (https://github.com/cvnlab/nsddatapaper/), 
and specific code files are referenced in the text below.

A comprehensive schematic outlining the data analysis performed in this 
paper is provided in Extended Data Fig. 3. The analysis of the NSD data can be 
divided into three components: (1) pre-processing of the anatomical, diffusion 
and functional data; (2) time series analysis of the fMRI data to estimate trial-wise 
betas; and (3) further analyses of the trial-wise betas to answer specific scientific 
questions. The first two components produce the so-called ‘prepared data’ that 
are generally useful to the community, whereas the third component refers to 
analyses performed for the purposes of this paper (estimation of pRFs from the 
NSD data, univariate memory analysis, representational similarity analysis and 
brain-optimized neural network training). Data collection and analysis were not 
performed blinded to the conditions of the experiments. No data were excluded 
from analyses, with the exception of a few T1 volumes (2 of 52 volumes = 4%) and 
certain portions of the eye-tracking data that were corrupted by noise (11 of 160 
eye-tracking runs = 7%).

The pre-processing approach that we designed for the NSD dataset 
prioritizes accuracy and preservation of information (for example, avoiding 
spatial smoothing). We avoid ‘baking in’ unnecessary assumptions (for example, 
aggressively removing signal fluctuations without careful assessment of validity), 
and we avoid assuming the accuracy of automated methods; care is taken to 
manually inspect each pre-processing step to ensure satisfactory results. Although 
we think our pre-processing is general and likely suitable for most downstream 
uses of the data, the raw data are also available for those who want to explore other 
pre-processing approaches, such as fmriprep76. We note several aspects of the NSD 
dataset that might render the dataset challenging from a pre-processing standpoint: 
the relatively high spatial resolution of the fMRI data (1.8 mm) places higher 
demands on spatial accuracy; the ultra-high field strength (7T) used for the fMRI 
data yields higher levels of EPI spatial distortion compared to lower field strengths; 
and the emphasis on many repeated scans of individuals heightens the importance 
of achieving consistent imaging results across scan sessions.

Pre-processing of MRI data. Details of the pre-processing of anatomical, 
functional and diffusion data are provided in Supplementary Notes 4 and 5. 
Functional data were pre-processed using one temporal resampling to correct 
for slice time differences and one spatial resampling to correct for head motion 
within and across scan sessions, EPI distortion and gradient non-linearities. Two 
versions of the functional data were prepared: a 1.8-mm standard-resolution 
preparation (temporal-resolution, 1.333 s) and an upsampled 1.0-mm 
high-resolution preparation (temporal-resolution, 1.000 s). Analyses of the pRF 
and fLoc experiments were used to define retinotopic and category-selective 
ROIs, respectively. Other ROIs were also defined, including an ‘nsdgeneral’ ROI 
indicating occipital regions generally responsive in the NSD experiment and a 
‘corticalsulc’ ROI collection indicating major cortical sulci and gyri. Annotations 
for several of the corticalsulc ROIs are shown in Figs. 3f and 4b.

Data quality metrics. Several data quality metrics were calculated (export_
runmetrics.m) and summarized in Figs. 1d and 2d. tSNR was computed from 
raw fMRI volumes (no pre-processing) by first de-trending the time series data 
from each voxel (quadratic polynomial fit) and then dividing the mean signal 
intensity by the standard deviation of signal intensity values (autoqc_fmri.m). 
We calculated the median tSNR across voxels within a simple brain mask (mean 
volume thresholded at 1/10th of the 99th percentile of values) and then computed 
the median across runs. Head motion was quantified by calculating frame-wise 
displacement77 based on motion parameter estimates (1.8-mm preparation). We 
calculated the mean frame-wise displacement across volumes in a run and then 
computed the median across runs. BOLD response was quantified by calculating 
the percentage of variance explained by a simple ON–OFF GLM model (1.8-mm 
preparation). We calculated the median variance explained across voxels within 
the nsdgeneral ROI and then computed the median across runs. (Additional 
details on the ON–OFF GLM can be found in the ‘GLMsingle algorithm’ section.) 
Response rate was quantified by calculating the percentage of trials for which the 
participant pressed a button and then computing the mean across runs. Behavioral 
performance was quantified by dividing trials into easy trials (trials for which the 
presented image had been previously presented in the same scan session), hard 
trials (trials for which the presented image had been previously presented but 
in a previous scan session) and novel trials (trials for which the presented image 
had never been previously presented) and then calculating, for each trial type, the 
percentage of trials on which the participant indicated an ‘old’ response.

To identify EPI signal dropout regions (export_signaldropout.m), we divided 
the T2 volume (resampled to match the EPI data) by the mean EPI volume (1-mm 
preparation). The resulting volume is useful as it indicates which voxels have 
high signal intensity in the T2 but are corrupted by signal dropout in the EPI. 
We mapped the volume to the cortical surface (cubic interpolation; mean across 
depth), transformed the result to fsaverage and then used a data-driven threshold 
to mark atypically high values. Vertices marked in at least four of the eight 
participants are indicated in Fig. 3f. To visualize surface imperfections, we took 
the voxels that were marked in the 0.8-mm anatomical space (during the manual 
inspection of FreeSurfer surface imperfections), smoothed this binary volume 
with a 3D Gaussian with full width at half maximum of 2 mm, mapped the result 
to the cortical surface (cubic interpolation; maximum across depth) and then 
transformed the result to fsaverage. Vertices exceeding 0.01 in at least one of the 
eight participants are indicated in Fig. 3f.

Rankings from the 7T fMRI screening session. Six quality measures (pRF BOLD, 
fLoc BOLD, pRF behavior, fLoc behavior, raw motion and de-trended motion) 
were computed for each of the 14 individuals who participated in the screening 
session. BOLD quality was quantified as the percentage of voxels for which 
variance explained by modeling the fMRI time series data (either pRF model fitting 
or GLM model fitting) exceeded 20%. Behavior quality was quantified as described 
above. Motion was quantified by calculating the median voxel displacement 
relative to the reference volume used for motion correction, computing the median 
of this quantity across volumes and then computing the mean across runs. This 
motion quantification was performed using raw motion parameter estimates 
(thereby providing a measure of global head displacement over the course of the 
session) as well as using motion parameter estimates that are linearly de-trended 
within each run (thereby providing a measure of within-run head instability). Each 
of the six measures was linearly scaled to span the range 1–5, where 1 corresponds 
to the worst performance and 5 corresponds to the best performance observed 
across participants. Finally, the normalized measures were averaged to produce an 
overall ranking for each participant, as depicted in Fig. 2c.

Analysis of behavioral data from the NSD experiment. The behavioral data from 
the NSD experiment were lightly reformatted for the convenience of subsequent 
analyses (analyzebehavior_nsd.m). We first checked whether the participant had 
accidentally positioned their fingers on incorrect buttons on the button box and 
compensated for this if necessary. (In a few instances, we deliberately instructed 
participants to use alternative buttons due to hardware malfunction of the button 
box.) We then recorded, for each stimulus trial, several quantities, including time 
of image presentation, whether the image presented was new or old, whether the 
response was correct or incorrect and the reaction time. Button responses were 
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extracted from a time window extending 250–4,250 ms after image onset. In the 
case of multiple buttons pressed during a trial, we scored the final button pressed, 
excluding any redundant presses of that button (participants sometimes repeated 
button presses for good measure).

GLM analysis of the NSD experiment. Overview of approach. We performed a 
GLM analysis of the pre-processed time series data from the NSD experiment. To 
maximize flexibility for subsequent analyses, the GLM approach was designed to 
provide estimates of BOLD response amplitudes (‘betas’) for single trials. Due to 
low SNR, single-trial estimation in fMRI is challenging. We, therefore, developed 
several analysis components to optimize the quality of single-trial betas. These 
components are packaged into a tool called GLMsingle, which is the subject of a 
forthcoming manuscript where additional details and discussion can be found.

The first analysis component of GLMsingle is the use of a library of HRFs, 
whereby the best-fitting HRF from the library is chosen for each voxel. This simple 
approach for compensating for differences in hemodynamic time courses across 
voxels78 has several appealing features: it is efficient and can be executed with little 
computational cost (and, hence, can accommodate the massive scale of the NSD); 
and it invariably provides well-regularized HRF estimates. The second analysis 
component is an adaptation of GLMdenoise to a single-trial GLM framework. 
GLMdenoise35 is a technique in which data-derived nuisance regressors are 
identified and used to remove noise from—and, therefore, improve the accuracy 
of—beta estimates. The third component is an application of ridge regression79 as 
a method for dampening the noise inflation caused by correlated single-trial GLM 
predictors. To determine the optimal level of regularization for each voxel, we 
make use of a recently developed efficient re-parameterization of ridge regression 
called ‘fractional ridge regression’36.

Derivation of the library of HRFs. To generate a library of HRFs that accurately 
capture empirically occurring time course variation, we performed an initial 
analysis of data from the first NSD core session (nsd01). This library was fixed and 
used for the analysis of all subsequent NSD sessions. The first step was to create a 
comprehensive summary of observed time courses (hrf_derivecanonicalpcs.m). 
The time series data from each participant’s nsd01 session was fit using a finite 
impulse response model (0–30 s) where all of the stimulus trials are treated as 
instances of a single experimental condition (this simplification is necessary to 
make estimation feasible). We identified voxels for which model variance explained 
(R2) was greater than 10%, and, from these voxels, we randomly drew 20,000 
voxels (with replacement). Pooling across participants, time course estimates from 
the resulting 160,000 voxels were subjected to singular value decomposition to 
determine the top three PCs (shown in Fig. 3b, inset). To fine-tune time course 
estimates, we re-fit the time series data from the nsd01 session using these three 
PCs as the basis (as opposed to the finite impulse response basis). Finally, adopting 
the visualization approach of the Temporal Decomposition Method73, we projected 
voxel time course estimates onto the unit sphere (using the same voxel selection 
criterion of R2 > 10%) and constructed a 2D histogram for each participant (shown 
in Fig. 3a).

The second step was to define a set of time courses that span the observed 
time course variation (hrf_constructmanifold.m). To do this, we converted the 
2D histograms to units of relative frequency and then averaged the histograms 
across participants. Inspecting the group average histogram (shown in Fig. 3b), 
we manually clicked a sequence of points on the unit sphere that follow the data 
density as closely as possible. We then parameterized the path traced by these 
points (a simple one-dimensional manifold) by positioning regularly spaced 
points where successive points are separated by six angular degrees (Fig. 3b, cyan 
dots). The time courses corresponding to the resulting set of 20 points were cubic 
interpolated to a sampling rate of 0.1 s and normalized to peak at 1 (Fig. 3c). 
Finally, we fit each time course using a double-gamma function as implemented 
in SPM’s spm_hrf.m (hrf_fitspmhrftomanifold.m). This yielded a library of 20 
canonical HRFs that might be useful for application to other experimental datasets 
(getcanonicalhrflibrary.m). We note that variation in time course shape is likely 
due to the influence of macrovasculature on BOLD temporal dynamics73.

Cross-validation framework for single-trial GLM. The GLMdenoise and 
ridge regression analysis components of GLMsingle both require tuning of 
hyperparameters. To determine the optimal setting of hyperparameters, we use 
a cross-validation approach in which out-of-sample predictions are made for 
single-trial beta estimates, as opposed to time series data. This simplifies and 
reduces the computational requirements of the cross-validation procedure. Note 
that, because of cross-validation, although GLMsingle produces estimates of 
responses to single trials, it does require the existence of and information regarding 
repeated trials—that is, trials for which the stimulus is the same.

The first step of the cross-validation procedure is to analyze all of the available 
data using no regularization. In the case of GLMdenoise, this amounts to the 
inclusion of zero nuisance regressors; in the case of ridge regression, this amounts 
to the use of a shrinkage fraction of 1, indicating ordinary least squares regression. 
In both cases, the analysis produces a full set of unregularized single-trial betas (for 
example, in one NSD session, there are 750 single-trial betas distributed across 12 
runs). The second step of the procedure is to perform a grid search over values of 

the hyperparameter (for example, number of nuisance regressors and shrinkage 
fraction). For each value, we assess how well the resulting beta estimates generalize 
to left-out runs. For example, in leave-one-run-out cross-validation, one run is 
held out as the validation run; stimuli that occur in both the training runs and 
the validation run are identified; and squared errors between the regularized beta 
estimates from the training runs and the unregularized beta estimates from the 
validation run are calculated. This procedure is iterated with each run serving as 
the validation run, and errors are summed across iterations.

GLMsingle algorithm. Having described the essential aspects of the estimation 
framework above, we now turn to the steps in the GLMsingle algorithm. 
GLMsingle involves fitting several different GLM variants. Each variant includes 
polynomial regressors to characterize the baseline signal level: for each run, we 
include polynomials of degrees 0 through round (L/2), where L is the duration in 
minutes of the run.

	1.	 Fit a simple ON–OFF GLM. In this model, stimulus trials are treated as 
instances of a single experimental condition, and a canonical HRF is used 
(getcanonicalhrf.m). Thus, there is a single ‘ON–OFF’ predictor that attempts 
to capture signals driven by the experiment. The utility of this simple model 
is to provide variance explained (R2) values that help indicate which voxels 
carry experiment-driven signals.

	2.	 Fit a baseline single-trial GLM. In this model, each stimulus trial is modeled 
separately using the canonical HRF. This model provides a useful baseline for 
comparison.

	3.	 Identify HRF for each voxel. We fit the data multiple times with a single-trial 
GLM, each time using a different HRF from the library of HRFs. For each 
voxel, we identify which HRF provides the best fit to the data (highest vari-
ance explained) and inherit the single-trial betas associated with that HRF. 
Note that the final model for each voxel involves a single chosen HRF from 
the library (not a weighted sum of HRFs).

	4.	 Use GLMdenoise to determine nuisance regressors to include in the model. 
We define a pool of noise voxels (brain voxels that have low ON–OFF R2) 
and then perform principal component (PC) analysis on the time series data 
associated with these voxels. The top PCs are added one at a time to the GLM 
until cross-validation performance is maximized on average across voxels.

	5.	 Use fractional ridge regression to regularize single-trial betas. With the nui-
sance regressors determined, we use fractional ridge regression (fracridge36) 
to estimate the single-trial betas, systematically evaluating different shrinkage 
fractions. For each voxel, in the context of a GLM that incorporates the spe-
cific HRF chosen for that voxel, cross-validation is used to select an optimal 
shrinkage fraction for that voxel. To mitigate bias on the overall scale of betas, 
we apply a post hoc scaling and offset on betas obtained for a given voxel to 
match, in a least squares sense, the unregularized betas obtained for  
that voxel.

Application of GLMsingle to the NSD data. We used GLMsingle to analyze the 
time series data independently for each NSD scan session (glm_nsd.m). Major 
algorithmic parameters included the following: we evaluated up to ten nuisance 
regressors; we evaluated shrinkage fractions from 0.05 to 0.90 in increments of 0.05 
and from 0.91 to 1 in increments of 0.01 (representing a finer grain for voxels with 
the best SNR); we performed six-fold cross-validation (consecutive pairs of runs) 
for Steps 4 and 5; and we used an ON–OFF R2 threshold of 5% in Step 4.

Three different versions of the single-trial betas were computed and saved. The 
first beta version (b1, ‘betas_assumehrf ’) is the result of Step 2 and reflects the use 
of a canonical HRF. The second beta version (b2, ‘betas_fithrf ’) is the result of Step 
3 and reflects the result of voxel-wise HRF estimation. The third beta version (b3, 
‘betas_fithrf_GLMdenoise_RR’) is the result of Step 5 and reflects the additional 
GLMdenoise and ridge regression procedures. Betas were converted to units of 
percent BOLD signal change by dividing amplitudes by the mean signal intensity 
observed at each voxel and multiplying by 100. Although we provide betas in units 
of percent signal change, we suggest that users might want to z-score the responses 
of each voxel within each scan session to eliminate potential non-stationarities and 
to equalize units across voxels.

For user convenience, we created preparations of the single-trial betas in 
additional spaces other than the native 1.8-mm and 1.0-mm functional spaces. For 
the ‘nativesurface’ preparation, we performed cubic interpolation of the 1.0-mm 
betas onto each of the three cortical surface depths and averaged across depths 
(analysis_transformfsaverage.m). The result was then mapped using nearest 
neighbor interpolation to fsaverage space to create the ‘fsaverage’ preparation. For 
the ‘MNI’ preparation, we mapped the 1.0-mm betas to MNI space using cubic 
interpolation (analysis_transformMNI.m).

GLM analysis of the resting-state experiment. As an optional resource, we fit 
the time series data from the resting-state experiment using methods that parallel 
those used for the NSD experiment (glm_nsdresting.m). For each scan session 
involving resting-state, we took the two resting-state runs (first and last run 
acquired) and analyzed the data using the design matrix of the neighboring NSD 
runs and the same voxel-wise HRFs determined from analyzing the NSD runs in 
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that scan session (this is analogous to beta version b2). Although there is no reason 
to think that spontaneous resting-state activity conforms to the 4-s trial structure 
of the NSD experiment, these resting-state betas might be useful as a direct 
comparison for the NSD betas.

Noise ceiling estimation. To obtain a measure of data quality, noise ceilings were 
estimated for the NSD betas (export_noiseceiling.m). The noise ceiling for a given 
voxel is defined as the maximum percentage of variance in the voxel’s responses 
that can, in theory, be explained, given the presence of measurement noise. Our 
method for estimating the noise ceiling follows the general framework laid out in 
previous studies80,81. Several assumptions are made: (1) the signal contained in the 
voxel’s response is determined solely by the presented image; (2) the variability of 
the signal across different images is Gaussian distributed; (3) the noise is Gaussian 
distributed with zero mean; and (4) the response to an image is equal to the signal 
plus noise. Given these assumptions, any observed response is a sample from a sum 
of Gaussian distributions:

RESP ∼ N

(

μsignal, σsignal

)

+ N (0, σnoise)

where RESP indicates the NSD beta observed on a given trial, μsignal is the mean 
signal across different images, σsignal is the standard deviation of the signal across 
different images and σnoise is the standard deviation of the noise (for illustration of 
these concepts, see Extended Data Fig. 8c). Note that the first Gaussian distribution 
characterizes true signal variability, whereas the second Gaussian characterizes 
variability due to noise. Also, note that this framework treats response variability 
unrelated to the stimulus as ‘noise’, but such variability might, in fact, reflect ‘signal’ 
from the perspective of functional connectivity82.

To compute the noise ceiling, we first take the trial-wise NSD betas for each 
voxel and z-score these betas within each scan session. This simple normalization 
compensates for non-stationarities that might exist across sessions. We then 
calculate the variance of the betas across the three presentations of each image 
(using the unbiased estimator that normalizes by n–1 where n is the sample size), 
average this variance across images and then compute the square root of the result. 
This produces an estimate of the noise standard deviation:

σ̂noise =
√

mean
(

β2
σ

)

where β2
σ indicates the variance across the betas obtained for a given image. Next, 

given that the variance of the z-scored betas is 1, we estimate the signal standard 
deviation as follows:

σ̂signal =
√

∣

∣1 − σ̂2
noise

∣

∣

+

where ||+ indicates positive half-wave rectification. Finally, we simplify by 
calculating a single scalar quantity:

ncsnr =
σ̂signal

σ̂noise

where ncsnr indicates the noise ceiling SNR.
Given the framework described above, the noise ceiling can be calculated as the 

amount of variance contributed by the signal expressed as a percentage of the total 
amount of variance in the data:

NC = 100 ×

σ2
signal

σ2
signal

+ σ2
noise

where NC indicates the noise ceiling. We would like to be able to calculate the noise 
ceiling based on the single scalar ncsnr. Moreover, because a researcher might want 
to average across multiple presentations of each image before attempting to explain 
the NSD betas, we would like a method for flexibly expressing the noise ceiling for 
different levels of trial averaging. With some algebra, it can be shown that the noise 
ceiling can be expressed as follows:

NC = 100 ×

ncsnr2

ncsnr2 + 1
n

where n indicates the number of trials that are averaged together (see the NSD 
Data Manual for the derivation and additional details). We note that there is a 
direct relationship between the commonly used metric of split-half reliability and 
the noise ceiling: if a voxel has two sets of responses that reflect the same image 
presentations, then the correlation between the two sets of responses multiplied 
by 100 is equal to the noise ceiling for single-trial responses expressed in percent 
variance explained.

Using the above methods, we calculated noise ceilings for each of the beta 
versions and for each of various spatial preparations (1.8-mm, 1-mm, fsaverage and 
nativesurface). For simplicity, noise ceiling estimates were calculated using betas 
associated with images with all three presentations available. To assess stability, we 

also computed split-half noise ceiling estimates. This was achieved by splitting the 
available images into two mutually exclusive groups and computing noise ceiling 
estimates independently for each group. The noise ceiling results shown in Fig. 3f,g 
and Supplementary Fig. 6 were computed assuming n = 3, reflecting the scenario 
in which trial-wise betas are averaged across three trials for each image. The noise 
ceiling results shown in Fig. 6a,b were computed assuming n = 1 and are expressed 
in correlation units (square root of percent variance explained).

We include a few important notes as follows. Even though the NSD consists 
of only up to three trials for a given image, the estimate of response variability 
for each voxel (that is, the noise standard deviation) is averaged across a very 
large number of images, thus stabilizing the noise ceiling estimate. Also, note that 
our noise ceiling metric refers to activity levels in individual voxels in individual 
participants. It is thus quite different from, for example, noise ceiling metrics 
computed for group average representational dissimilarity matrices83. The latter are 
more abstracted away from the data given that they summarize properties observed 
across a collection of voxels, reflect second-order computations on activity levels 
and not activity levels themselves and probe responses at the group level and not at 
the individual level.

Calculation of equivalent trials. To provide a common basis for comparing 
different datasets, we define the number of equivalent trials present in a dataset 
as N × ncsnr2, where N indicates the number of trials conducted and ncsnr is the 
noise ceiling SNR (as defined above). The assumptions here are that (1) every trial 
has equal value, irrespective of whether it is used to measure brain responses to 
an image that has already been shown or a new image (for example, two trials for 
one image is equivalent to one trial for two distinct images); and (2) increases in 
SNR are equivalent to the collection of additional trials. For an illustrative example 
of the second assumption, suppose an experimenter chooses to improve SNR by 
averaging the response to a given image across p repetitions of that image. This 
effectively reduces the noise standard deviation by a factor of √p, and ncsnr will 
thus increase by a factor of √p. Alternatively, the experimenter could choose to 
not average and instead use the p trials as is. In the former case, the number of 
equivalent trials is 1 × (√p × ncsnr)2 = p × ncsnr2, whereas, in the latter case, the 
number of equivalent trials is p × ncsnr2. Thus, the two cases correspond to the 
same number of equivalent trials.

We conducted an auxiliary analysis that directly compares the NSD against the 
BOLD5000 dataset22. The goal of this analysis was to calculate a summary ncsnr 
value for each dataset, so that the number of equivalent trials can be calculated. 
For fair comparison, both NSD and BOLD5000 were analyzed using the same 
GLM methods described in this paper (beta version b3). We then defined a 
common brain region on which data quality can be compared. This was done by 
transforming the nsdgeneral ROI to MNI space and then mapping the resulting 
MNI mask to each participant in the two datasets. Finally, we computed the 
median ncsnr observed across voxels in the mask in each participant.

The median ncsnr, averaged across participants, was 0.260 for the NSD 
(averaged across the first four NSD participants) and 0.187 for BOLD5000 
(averaged across the four participants in BOLD5000). This indicates that, despite 
the longer time duration allocated per trial in BOLD5000 (10 s) compared to 
the NSD (4 s), the quality of a single-trial beta in the NSD is higher than that in 
BOLD5000. Specifically, one NSD trial is approximately equivalent to (0.260)2/
(0.187)2 = 1.93 BOLD5000 trials. This increase in quality is likely due, in part, to 
the screening of participants and the ultra-high magnetic field strength (7T) used 
in the NSD. Note that the ncsnr metric quantifies the SNR per trial and is expected 
to be unbiased with respect to the number of repeated trials used to calculate it. 
Thus, although the exact number of trials per image is different in the NSD and 
BOLD5000 datasets, the ncsnr values can still be directly compared.

Univariate analysis of memory recognition. For this analysis (results shown in 
Fig. 4b), we used version 3 of the NSD betas (b3) in the fsaverage preparation. 
Betas for each surface vertex were kept in percent signal change units. Using the 
behavioral responses, we identified trials involving hits (participants responded 
‘old’ to a previously presented image) and trials involving correct rejections 
(participants responded ‘new’ to a novel image). Then, for each participant, we 
calculated two-sample t-values at each surface vertex. This was done both for trials 
pooled within individual NSD scan sessions as well as for trials pooled across all 
sessions.

Representational similarity analysis. For this analysis (results shown in Fig. 5), 
we used version 3 of the NSD betas (b3) in the fsaverage preparation. Betas for 
each surface vertex were z-scored within each scan session, concatenated across 
sessions and averaged across repeated trials for each distinct image. To support the 
representational similarity analysis84, we defined a set of ROIs (V1, V2, V3, pVTC 
and aVTC) on the fsaverage surface. This was done by mapping the manually 
defined V1, V2 and V3 from each participant to fsaverage, averaging across 
participant and using the result to guide the definition of group-level ROIs. We 
also defined a posterior and anterior division of ventral temporal cortex (pVTC 
and aVTC, respectively) based on anatomical criteria. For each participant, we 
extracted betas for vertices within each ROI (concatenating across hemispheres). 
We then computed Pearson’s correlation between beta patterns across all possible 
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pairs of images. This yielded RDMs with rows and columns indexing  
distinct images (for example, the RDMs for participant 1 have  
dimensionality 10,000 × 10,000 with correlations corresponding to 49,995,000 
possible pairs).

To help visualize and interpret these large dissimilarity matrices, we performed 
t-SNE embedding41,85 using a perplexity level of 100 (Fig. 5b,c). This projects 
the high-dimensional representations onto a 2D plane such that the distance of 
a given pair on the plane reflects that pair’s distance in the high-dimensional 
representation as accurately as possible. To verify the strong categorical structure 
visible in pVTC and aVTC (Fig. 5b), we quantified the similarity of the brain 
RDMs to a model RDM constructed from the category labels in the COCO 
dataset. Specifically, we constructed an RDM from a binary matrix indicating the 
presence or absence of each of the 80 COCO categories (cosine distance metric) 
and correlated this model RDM with each brain RDM. This process was performed 
for mutually exclusive groups of 100 images drawn from all images presented three 
times to a given participant (the number of groups was 100, 100, 62, 54, 100, 62, 
100 and 54 for the eight participants, respectively). We calculated the mean  
and standard error across results obtained for different groups of images  
(Fig. 5d). Finally, we investigated similarity of brain representations across ROIs 
and participants. This was done by isolating the shared515 images, constructing 
brain RDMs for these images and correlating brain RDMs across ROIs and 
participants. The resulting second-order RDM is shown in Fig. 5e, with further 
quantification of this matrix shown in Fig. 5f.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The NSD dataset is freely available at http://naturalscenesdataset.org. The data 
are hosted in the cloud, allowing researchers to exploit high-performance cloud 
computing to efficiently analyze the dataset. We provide both raw data in BIDS 
format86 and prepared data files, along with extensive technical documentation 
in the NSD Data Manual. To ensure strict validation for an upcoming Algonauts 
prediction challenge87, the initial public release will withhold the last three NSD 
scan sessions from each participant (approximately 8.4% of the NSD data). Images 
used for the NSD were taken from the Common Objects in Context database14 
(https://cocodataset.org).

Code availability
We provide an archive of code used in this study (https://github.com/cvnlab/
nsddatapaper/) as well as utility functions for working with the prepared NSD data 
(https://github.com/cvnlab/nsdcode/). Custom algorithms developed for this study 
include GLMsingle (https://github.com/cvnlab/GLMsingle/) and fracridge (https://
github.com/nrdg/fracridge/). Example scripts demonstrating scientific analyses of 
the NSD data are available (https://github.com/cvnlab/nsdexamples/); these scripts 
might be useful for teaching purposes.
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Extended Data Fig. 1 | Design of the NSD experiment. a, Image presentations. Each of 10,000 distinct images was placed 3 times on a circle according 
to a probability distribution created by mixing a relatively narrow von Mises distribution and a uniform distribution. The resulting image sequence was 
divided into 40 equally-sized segments for the 40 NSD scan sessions. b, Basic statistics of image repetitions. We define novel trial as a trial involving an 
image never shown before, old trial as a trial that is not a novel trial, and easy trial as an old trial for which the presented image had been shown previously 
in the same scan session.
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Extended Data Fig. 2 | Overview of data collection. This table summarizes the overall NSD data collection effort. Structural and diffusion MRI data were 
collected at 3T. Functional MRI data were collected at 7T. The breakdown of the 7T fMRI scan sessions is indicated: for example, subject 2 participated in 
1 (prffloc) + 40 (nsd01–nsd40) + 1 (nsdsynthetic) + 1 (nsdimagery) = 43 7T fMRI scan sessions. Additional behavioral data were acquired outside of the 
scanner (nsdpostbehavior, nsdmemory, nsdmeadows). Note that scan sessions were occasionally split across multiple magnet entries (see aquamarine 
and yellow cells). For simplicity, we treat these cases as if they represent single scan sessions.
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Extended Data Fig. 3 | Overview of data analysis. Analyses conducted in this paper can be divided into three parts. Part 1 consists of pre-processing, 
in which raw functional, anatomical, diffusion, and eyetracking data are transformed into various useful intermediate outcomes. In addition, coordinate 
transformations between various spaces are estimated and incorporated into the nsd_mapdata utility. Part 2 consists of analyses of the pre-processed 
fMRI data. The GLMsingle algorithm introduced in this paper is used to analyze the fMRI data from the NSD experiment (Part 2a), and standard methods 
are used to analyze the fMRI data from the pRF and fLoc experiments (Part 2b). Part 3 consists of specific scientific analyses demonstrated in this paper 
that make use of the data prepared in Parts 1 and 2. Given the extensive data preparation procedures (Parts 1–2), it is useful to comment on which aspects 
are fairly typical in MRI processing and which are more customized or unique to the present work. With respect to the pre-processing steps in Part 1, 
the general outcomes that these steps achieve are typical in MRI and are necessary for basic interpretation of the data. For example, small shifts in head 
position over the course of a scan session necessitate some motion compensation in order to interpret the signal from a given voxel in terms of a single 
brain location. The specific methods by which we execute these pre-processing steps may differ from what is performed in commonly used software 
packages (for example, SPM, FSL, AFNI). However, the outcomes are similar at a conceptual level: for example, the fMRI data are pre-processed using 
temporal interpolation of voxel-wise time-series data and spatial interpolation of brain volumes. With respect to the additional preparation procedures 
in Part 2, the procedures in Part 2b are fairly typical analyses used to functionally localize brain regions. More customized and unique to the present 
work are the procedures in Part 2a, which are designed to improve the accuracy of single-trial fMRI amplitude estimates. We provide evidence that these 
procedures do in fact perform as intended (see Fig. 3 and Extended Data Fig. 8).
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Extended Data Fig. 4 | Eyetracking results. a, Pre-processing of eyetracking data. Blinks and tracking noise were removed, followed by linear detrending, 
median-centering, downsampling, and smoothing. Runs with less than 1/3 valid samples after these cleaning procedures were excluded from further 
analysis (see Supplementary Note 5). Shown are results for an example run (subject 1, nsd31 scan session, run 6). Pre-processing reduced noise without 
obscuring potential eye movements. b, Fraction of time during which deviation from central fixation was less than a specific threshold. Results are 
shown for a range of thresholds (left) and for a threshold of 1° (right). c, 2D histograms of gaze positions. The main images show histogram results on a 
linear scale; the inset images show results on a log scale. To summarize the results, we overlay a gray ellipse marking the central 90% of a multivariate 
2D Gaussian distribution that has been fit to the gaze positions, as well as a blue circle containing 90% of the gaze positions. Both the parametric and 
non-parametric approaches yield similar results and indicate that gaze positions of all subjects clustered around central fixation. The level of precision 
varied across subjects. The number of usable eyetracking runs for each subject is indicated by the white text. d, Example of accurate fixation behavior 
(subject 1, nsd31 scan session, run 8). Shown are pre-processed vertical gaze coordinates (top left), normalized pupil area (bottom left), and a 2D scatter 
plot of gaze positions (right). e, Example of eye movements (subject 5, nsd29 scan session, run 11). Same format as d. Notice that eye movements 
manifest as staircase structure in the vertical gaze coordinates and as dispersed gaze positions in the scatter plot. f, Trial-wise time-resolved analysis. 
Relative to stimulus trial onsets, we plot the across-trial median deviation from central fixation (top), as well as the across-trial median pupil size after 
mean-centering the pupil size within each trial (bottom). Results for subjects 3 and 8 are not available for this analysis. Overall, the results show that 
subjects were able to maintain fixation most of the time: gaze positions were within 1° of central fixation 68–97% of the time (see b). Three subjects 
are worth further discussion. Subject 4 exhibited eye movements after stimulus onset (see f, top); however, this is of minor concern given that these 
movements were small. Subject 5 exhibited more substantial eye movements (see c, e, and f); we suggest exclusion of this subject from analyses of 
the NSD fMRI data that are contingent on strict central fixation. Finally, while our results indicate fixation instability for subject 8 (see b and c), careful 
inspection of the eyetracking video recordings (available online) suggests this reflects pupil tracking noise rather than actual eye movements made by  
the subject.
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Extended Data Fig. 5 | Improvements in spatial detail through upsampling. a, Comparison of approaches. For an example coronal slice in Subject 1, we 
compare the non-upsampled 1.8-mm preparation of the data (left), the upsampled 1-mm preparation of the data (right), and a version of the 1.8-mm 
results that has been post-hoc upsampled to 1-mm resolution to enable direct comparison (middle). Two quantities are shown: mean signal intensity and 
variance explained by an ON-OFF GLM model. b, Zoomed view of white rectangle marked in a. c, Profile view of blue dotted horizontal line marked in 
b. Error bars in the bottom plot indicate ± 1 SEM across 40 scan sessions (error bars are small and nearly invisible). d, Timecourse estimates for voxels 
marked by orange arrowheads at the bottom of c. Each colored trace corresponds to an estimate of the hemodynamic timecourse for a single voxel in one 
NSD scan session from the upsampled 1-mm data preparation. The beginning of the timecourses (first vertical line) corresponds to the onset of the 3-s 
image presentation. The results shown in this figure support the idea that the upsampled data preparation preserves fine-scale spatial detail that is lost 
(blurred away) under a non-upsampled data preparation. While the effects are small, preserving as much detail as possible may be critical for certain 
neuroscientific questions.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


Resource NaTurE NEuroSciEncE

Extended Data Fig. 6 | Reliable diffusion derivatives facilitate investigation of white-matter connectivity. a, Fractional anisotropy (FA). The left shows 
tractography and FA results for the optic radiation identified in subject 7. The right shows reliability of FA results for 61 white-matter tracts identified using 
the atlas from Bullock et al.114 For other measures, see Supplementary Fig. 5c–e. b, Structural connectivity. Using 43 visual areas × 2 hemispheres = 86 
regions from the HCP-MMP1 atlas109 (left), we construct group-average connectivity matrices indicating the density of fibers connecting pairs of regions 
(right). c, Quantitative summary. Each dot represents fiber density between a pair of regions (as in b). Dot colors reflect different region pairs but are 
otherwise arbitrary. Group-average results (main figure) and results for an individual subject (inset) are shown.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ResourceNaTurE NEuroSciEncE

Extended Data Fig. 7 | Regions of interest (ROIs) provided with NSD. A variety of ROIs were defined based on auxiliary fMRI experiments (pRF, fLoc). 
In a–c, we show example results for subject 3, right hemisphere. a, Early visual areas. Results are shown on FreeSurfer’s sphere surface as well as in the 
0.8-mm anatomical volume space. b, Eccentricity-based regions. Similar format to a. Note that the total stimulus extent is 8.4° × 8.4° in the pRF, fLoc, 
and NSD experiments. c, Face-selective regions. Regions were defined based on t-values computed for the contrast of faces against all other categories. 
Results are shown on FreeSurfer’s inflated surface as well as in the 0.8-mm anatomical space. d, Probabilistic maps of ROI locations. For each of three 
example ROIs, we map the location of the ROI in each subject to fsaverage and then compute, for each fsaverage vertex, the fraction of subjects labeled at 
that vertex. Notice there is reasonable consistency across subjects in fsaverage space.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Detailed visualization of NSD betas. We prepared three beta versions (b1, b2, b3) reflecting GLM analyses of increasing 
sophistication. a, Inspection of NSD betas. The full set of estimated single-trial responses (1.8-mm preparation, beta version b1) is shown for voxels in 
subject 1 right hemisphere region of interest (ROI) FFA-1 (fusiform face area subdivision 1). We observe horizontal stripes, indicative of gross variation in 
percent BOLD signal change across voxels. b, Zoomed view of one scan session. Shown are all three beta versions, as well as the result of z-scoring betas 
within each scan session (in general, we suggest that users may wish to z-score each voxel’s responses within each scan session in order to eliminate 
potential non-stationarities and to equalize units across voxels). The different beta versions generally resemble one another (left column), implying that 
the variations in GLM methods do not drastically change the data. Vertical stripes visible in the visualizations tend to decrease from b1 to b2, suggesting 
that fitting voxel-wise HRFs reduces artifacts. Vertical stripes also tend to decrease from b2 to b3, which might reflect the reduction of correlated noise 
achieved by GLMdenoise. c, Detailed inspection of one voxel. To assess the reliability of evoked responses, we group trials according to the image 
presented. The estimated signal standard deviation (σsignal) and noise standard deviation (σnoise) are illustrated at the right of each subplot. Notice that 
b2 and b3 reduce variability of betas across the 3 trials associated with each image. d, Response reliability. Here we plot single-trial responses observed 
in two example ROIs (1.8-mm preparation, beta version b2, right hemisphere FFA-1 and PPA (parahippocampal place area), response averaged across 
voxels in each ROI), showing the first 50 of the shared515 images. The left column shows responses for different trials in subject 1; the right column shows 
trial-averaged responses in different subjects. Lines connecting consecutive images are used to aid visualization but do not indicate specific temporal 
relationships between images. Thick black lines indicate the mean across trials (left) or subjects (right). Notice that reliability is reasonably high both 
within and across subjects. e, Quantitative summary. To summarize results shown in d, we plot the correlation between responses to the shared515 images 
across all trials and all subjects. Thin white horizontal and vertical lines separate different subjects (each having 3 trials). Notice there is high reliability 
within each ROI, and responses are highly dissimilar across ROIs. The strong off-diagonal elements (white arrows) indicate the presence of spatial noise 
correlations that occur on individual trials, which is typical in fMRI45. Noise correlations likely reflect a combination of measurement noise (for example, 
head motion) and real neural activity variability (for example, arousal effects). In some cases, correlations are larger across subjects than within subjects; 
one explanation is that there is, to some degree, a common ROI representation and a noisy measurement of this representation obtained in one subject 
might actually be better correlated with a less noisy measurement of this representation obtained in a different subject. Also, the results indicate the 
existence of temporal ordering effects (for example, trial 1 in a given subject tends to be more correlated with trial 1 in other subjects as opposed to trials 2 
or 3). This likely indicates the presence of adaptation- and/or memory-related effects in the NSD data, given that the temporal ordering of trials was fixed 
across subjects.
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Extended Data Fig. 9 | Angle and eccentricity estimates from the NSD data. Here we show results from the analysis of the pRF experiment and results 
from an analogous analysis performed on trial-averaged NSD betas (see Supplementary Modeling Note 1 for details). Each panel shows an occipital 
view of FreeSurfer’s sphere surface, and white lines indicate borders of visual areas V1–hV4 (defined based on results of the pRF experiment). Angle and 
eccentricity estimates are plotted using the same colormaps as in Benson et al.30 We also plot the amount of time-series variance explained in the pRF 
data (variance relative to the mean signal level) and the amount of variance explained in the NSD betas (variance relative to 0% BOLD signal change). 
Clear retinotopic maps in early visual cortex are visible in the NSD results, including robust angle estimates even in foveal regions. In addition, there is 
high consistency of retinotopic estimates across the pRF and NSD datasets. There is some discrepancy in absolute eccentricity estimates at peripheral 
locations; this is likely due to technical differences in how modeling procedures behave for voxels near the stimulus edge.
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Extended Data Fig. 10 | Design of AlexNet- and GNet-based encoding models. a, Illustration of an encoding model that predicts brain activity in a given 
voxel (rtv) in response to images (xt). Images are passed to nonlinear feature extractors, ηl (trapezoids), that output feature maps (grey cuboids). Feature 
maps are grouped, passed through an element-wise nonlinearity, f(·), and then multiplied pixel-wise by a spatial pooling field (g1,…,gN where superscripts 
index distinct groups of feature maps) that determines the region of visual space that drives voxel activity. The weighted pixel values in each feature 
map are then summed, reducing each feature map to a scalar value. These scalar values are concatenated across all feature maps, forming a single 
feature vector that is passed through another element-wise nonlinearity (left black rectangle) and then weighted by a set of feature weights, w (right 
black rectangle), to yield predicted voxel activity. Note that for each type of encoding model (for example, AlexNet-based encoding model, GNet-based 
encoding model), the feature extractors are identical for all voxels, but the spatial pooling fields and feature weights are optimized and may vary across 
voxels. For the AlexNet-based encoding model, the feature extractors were pre-specified, the spatial pooling fields were optimized via line search, and the 
feature weights w were optimized via ridge regression. For the GNet-based encoding model, stochastic gradient descent with early stopping was used to 
optimize the parameters of the feature extractors ηl, the spatial pooling fields g1,…,gN, and the feature weights w. b, Illustration of spatial pooling fields. 
For the AlexNet model, a single isotropic 2D Gaussian pooling field (middle) selected from a set of candidates (right) was applied to all feature maps. 
For the GNet model, an independent, flexible pooling field (left) was applied to each group of feature maps. Applying flexible pooling fields to AlexNet 
leads to lower prediction accuracy overall, so we present the version that uses isotropic 2D Gaussian fields. c, Comparative architecture of AlexNet and 
GNet. AlexNet and GNet are both deep convolutional neural networks, but differ in the types and sequencing of layers (rows of the table). The first three 
layers are the same for both networks and correspond to the first three layers of an AlexNet trained to classify objects in the ImageNet dataset. For both 
networks, these shared ‘pre-filtering’ layers are followed by sequences of convolutional layers (rows labeled ‘conv’; values indicate feature depth and 
convolutional filter resolution; ‘str’ = filter stride, ‘pad’ = convolutional padding), max-pooling layers (‘maxpool’), batch-normalization and weight-dropout 
layers (‘batchnorm + dropout’), adaptive averaging layers (‘adaptive avg’), and fully-connected layers (‘fully con.’; value indicates number of units). Feature 
maps in the convolutional or fully connected layers (indicated by red arrows; resolution of the feature maps in parentheses) are used as predictors of brain 
activity in the context of an encoding model (see a).
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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release will withhold the last three NSD scan sessions from each participant (about 8.4% of the NSD data). Images used for NSD were taken from the Common 

Objects in Context database (Lin et al., 2014) (https://cocodataset.org). 
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Sample size This study collects massive amounts of data in individual subjects. Analyses demonstrated in this paper are conducted primarily at the within-

subject level, demonstrating the precision and robustness of the data collected. For group-level analyses, the number of subjects used for 

NSD (n = 8) is sufficiently large to provide some power for statistical inference. The sample size (n = 8) was chosen based on consideration of 

guarding against incidental findings that occur only in a few individuals and based on consideration of subject burden (if all images had been 

presented to a single subject, data collection would have extended for 8 years). 

Data exclusions We implemented a subject-selection procedure in which the best 8 subjects out of a pool of 14 potential subjects (on basis of criteria such as 

head motion and BOLD signal strength) were selected for full NSD data acquisition. This was done to optimize the quality of the NSD dataset. 

For the neural network analysis, due to computational memory limitations, we used data from the best 4 out of the 8 NSD subjects in terms of 

signal-to-noise ratio (SNR); this analysis is intended primarily to demonstrate proof of concept, and the SNR-based selection is not expected to 

incur significant inferential biases. Due to image artifacts, we excluded 2/52 (4%) of the acquired T1-weighted volumes (excluded volumes 

were from Subject 8). Due to eyetracking noise, for the eyetracking results shown in Extended Data Figure 4, we excluded 1/24 (4%), 1/24 

(4%), 7/8 (88%), 0/24 (0%), 0/24 (0%), 0/24 (0%), 0/24 (0%), and 2/8 (25%) of the acquired eyetracking runs from the 8 subjects, respectively 

(in aggregate: 11/160 (7%)).

Replication This resource paper describes extensive quality checks on the data acquired from the 8 NSD subjects. We provide substantial evidence that 

high-quality data were obtained from all subjects. Sufficient data were obtained such that we were able to demonstrate effects at the level of 

individual subjects and replicate effects across multiple subjects. Note that some subjects fare better on certain quality metrics (e.g. head 

motion) than others. In addition, there is some variation in the total amount of data collected across subjects (e.g. between 30–40 core NSD 

scan sessions were acquired for each subject).

Randomization All participants engaged in the same set of experiments. However, somewhat non-overlapping sets of stimuli were chosen for each subject. 

The allocation of stimuli to different subjects was done randomly from a fixed set of images pulled from the Microsoft COCO database. Given 

the large scale of stimulus sampling (e.g. 9,000–10,000 unique images were shown to each subject), it is likely that although the exact same 

images are not shown to each subject, the same general types of stimulus features are well sampled for each subject.

Blinding Blinding is not relevant to this study given that there is little that the investigators could have done to bias the nature of the recorded data 

and given that the participants do not belong to any discrete groupings.

Reporting for specific materials, systems and methods
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Population characteristics A mixture of males and females were used (2m, 6f). All participants were healthy young adults between 19–32 years old, and 

all provided informed written consent. Participants were compensated at a rate of $30 per hour, plus performance bonuses.
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Recruitment Participants were recruited through advertisements to the local community and were screened based on ability to participate 

in this long-term neuroimaging study. In addition, we selected participants based on data quality from an initial 7T fMRI 

session. This selection does induce a bias towards individuals with low head motion, high cognitive performance, and strong 

BOLD responses. The goal of the NSD dataset is largely to create a massive dataset to inform studies of the basic mechanisms 

of vision and memory, and does not represent an unbiased sampling of the human population.

Ethics oversight University of Minnesota Institutional Review Board

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type The core NSD experiment is task-based and has an event-related design. The prf experiment is task-based and has a 

continuous design. The floc experiment is task-based and has an event-related design. We also collected resting-state 

data, as well as structural and diffusion data.

Design specifications In the core NSD experiment, images were presented for 3 seconds, and were followed by a minimum of 1 second of gap 

before the next trial. Many thousands of distinct images were presented over the course of many distinct scan sessions, 

with a maximum number of presentations per distinct image of 3.

Behavioral performance measures Button presses and associated reaction times for each trial in the NSD experiment were recorded. To ensure high data 

quality, we monitored basic response metrics, like response rate. We quantified recognition performance in the NSD 

experiment using signal detection theory.

Acquisition

Imaging type(s) Functional, structural, diffusion, venogram, angiogram

Field strength 7T and 3T

Sequence & imaging parameters The primary fMRI sequence involved gradient-echo EPI, FOV 216 mm x 216 mm, matrix size 120 x 120, slice thickness 

1.8 mm, orientation axial, TR 1.6 s, TE 22.0 ms, and flip angle 62°.

Area of acquisition Whole-brain scans including the cerebellum

Diffusion MRI Used Not used

Parameters 99–100 directions; b-values of 0, 1,500, and 3,000; no cardiac gating

Preprocessing

Preprocessing software A combination of custom MATLAB and Python code, FreeSurfer 6, and selected tools from SPM, FSL, ANTs, and MRTrix3.

Normalization The NSD data were prepared in a variety of spaces including subject-native space and atlas spaces (MNI, fsaverage). Some of 

the data demonstrations in this paper show results in subject-native spaces; some show results that reflecting averaging in 

atlas spaces.

Normalization template For preparation of data in atlas spaces, the MNI152 and fsaverage templates were used.

Noise and artifact removal For the GLM preparation of the NSD data, the data-driven analysis method GLMdenoise and the statistical technique of ridge 

regression were used. These methods can account for a variety of sources of noise (e.g., physiological, motion, scanner 

artifacts, effects of collinearity). A version of the GLM results that omit these noise removal methods is also provided.

Volume censoring No censoring was performed.

Statistical modeling & inference

Model type and settings Trial-wise fMRI response amplitudes were estimated for individual voxels in individual subjects. A variety of analyses were 

then performed on these response amplitudes, including univariate, multivariate, RSA, and encoding models.

Effect(s) tested We conducted rich sampling of the brain's response to a large number of complex natural scenes. The resulting 

measurements can now be used to test and explore a variety of different scientific hypotheses.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
Atlas-based regions of interest were incorporated into this resource for user convenience. In addition, a 

number of manually defined regions of interest based on both functional and anatomical criteria were 

created.
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Statistic type for inference
(See Eklund et al. 2016)

This paper provides a resource in which data from all voxels are processed and made available. Thus, thresholding and 

specific inferential claims are largely not applicable here. 

Correction Not applicable, as voxel-wise statistical significance inferences are not a primary focus of this paper.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis For pRF estimation, we used local contrast of NSD images to predict NSD betas through a simple pRF model, 

using nonlinear optimization to determine parameters for each voxel/vertex. For representational similarity 

analysis, we constructed representational dissimilarity matrices by correlating multivariate brain activity 

patterns. For neural network modeling, we used either pre-trained image-computable neural network 

models (AlexNet, Gabor model) or brain-optimized image-computable neural network models (GNet). These 

models were trained on a set of training data (the non-shared NSD images) and validated on a separate set 

of validation data (the shared NSD images).
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